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QCQP: Quadratic Constrained Quadratic Programming

Let QV,...,Q™ be n x n symmetric matrices, b e R™.
v* == min zTQ%
zeR™ (’P)

st. zTQPx <b,, pem]=1{1,...,m},

Applications

MAX-CUT, sensor location problems, optimal flow problems,...

e (P)is a homogeneous form (no linear terms).

e Calculation of v* is NP-hard.




Semidefinite Programming (SDP) Relaxation

A e B: Frobenius (component-wise) inner product of A and B

X = O: Positive semidefinite

v* = min {7 Q% | z'QPz <b, Vpe[m]}

— T
= min{ Q" e X X =z
QPeX <b, Vpe [m]
T
> min< Q" e X X = zz (Pr)
QP e X <b, Vpe[m]
=: U3pp

vépp can be caluculated in polynomial time.




Exactness of SDP Relaxation

X>=0
* . 0 X — — o
! \mm{Q * ' QPe X <b, Vpe [m] } fsop

= holds
<= SDP relaxation is exact

Interested in

What conditions of QCQPs guarantee the exact SDP relaxation?

(v* = vipp)

— classify QCQPs as tractable or not.



Exactness of SDP Relaxation

X>=0
* . 0 X — — o
! \mm{Q * ' QPe X <b, Vpe [m] } fsop

= holds an optimal solution X*
. —
<= SDP relaxation is exact of rank-1 exists

Interested in

What conditions of QCQPs guarantee the exact SDP relaxation?

(v* = vipp)

— classify QCQPs as tractable or not.



Sparsity structures of QCQPs

Exactness condition for bipartite sparsity structures

Example

Sign-definite QCQPs
e Comparison with existing research

e Summary



Sparsity Pattern of QCQP

Aggregated Sparsity Pattern of QCQP: G(V,€)

V = [n],
&= {(i,j)eVQ‘i;éj, Q%#Oforsomepe{o,...,m}}.

0%0
ex. min{ zTQ% ’ z'Qlz <10 } e‘e




Forest and Bipartite Graph

Let G(V, £) be a nonempty graph.

G

Cycle

Odd length Even length #Components

Tree
Forest
Bipartite

Tree

O-®

Forest

v

Bipartite



Dual of SDP Relaxation

'UDSDP = maX{ -b y|y>0 S >‘O} (DR)

where matrix function over R™:

Sy) =Q°+ > u@”.
p=1
When a given QCQP has the sparsity pattern G(V, £),

o S(y)e =0if (k,0) & E.

o = S(y) follows the same sparsity £.




Assumption in This Talk

(i) Both (Pr) and (Dr) have optimal solutions, and

(ii) At least one of the following two conditions holds:
(@) the feasible region of (Pr) is bounded, or

(b) the set of optimal solutions for (Dg) is bounded.

e strong duality holds:  (Kim and Kojima?)
A(X*, y*): solutions of (Pgr) and (D) such that

X*S(y*) = 0.

1Sunyoung Kim and Masakazu Kojima. Strong duality of a conic optimization problem with a single hyperplane and two cone
constraints. arXiv:2111.03251v2. 2021.



Sufficient Conditions for Exactness

v" = v3pp
<= (Pgr) has an optimal X* satisfying rank(X™*) < 1

<= (Dg) has an optimal y* satisfying rank{S(y*)} > n — 1
(under the strong duality)

< rank{S(y)} >n—1 Vy > 0 satisfying S(y) = O

{: { S(y) = 0, Sy >0,

S(y)ij > 0V(i,j) € E [Groneetal, 1992]

Since y >0, S(y) = O, S(y)i; <0 has no solutions,

we conclude S(y);; > 0V(i,j) € &.
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New Exactness Condition

Suppose G is a bipartite.

Exactness Condition for QCQPs with Bipartite Structures

For all (k,¢) € &, the following system has no solutions:

e Checking |&| feasibility systems is required.
e (1)is a SDP, i.e., tractable.



Example 2

min zTQ%
s.t. wTQlw < 10, a:TQ2zc < 10, a:TQ3:c <5
where
[0 —2 0 2] 5 2 0 1]
-2 0 -1 0 2 -1 3 0
0 _ 1_
@ -1 5 1|’ @ 0 3 =1
2 0 —4 1 0 -1 4
(11 0 0] (4 -1 0 0]
o? — 4 —1 0 0 -1 -2 0
o -1 6 1|°° |0 1 -2 4
0 0 1 -2 0 0 4 2
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Systems of Example 2

Consider the problem for (k, /) € &:

p*=min  S(y)ke 2
st. y>0, S(y) = 0.

k0| (L) @3 14 @9
p* | 1858 12.84 8.897 0.3215

All positives = the following systems have no solutions:

13



Comparison of Exactness Conditions

Graph G Systems to check

Burer & Ye? no edges | S— forall (k,¢) suchthatk =/¢

Azuma et al.3 forest | S— forall (k,0) €&

Proposed method || bipartite | S< forall (k,¢) € £

[a LP or a SDP: tractable problem}

where systems are:

find y >0 suchthat S(y) = O, [S(y)]ke < 0. (Se)

2Samuel Burer and Yinyu Ye. “Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic
programs”. In: Mathematical Programming 181.1 (2020), pp. 1-17.

3Godai Azuma et al. “Exact SDP Relaxations of Quadratically Constrained Quadratic Programs with Forest Structures”. In:
Journal of Global Optimization 82.2 (2022), pp. 243-262. 14



Sign-definite QCQP
Definition of Sign-definite QCQP

e Forall (i,7), the set T;; := {Q%, ..., Q7 } is sign-definite
e QCQPs with no sparsity

‘ all nonnegative or all nonpositive ‘

Theorem 24 [Sojoudi and Lavaei, 2014]

H oij = (=)l forall cycles Cin G (3)
(3,9)€C

where

+1 (Tj; has all nonnegative),
o —
N —1 (Tj; has all nonpositive).

4Somayeh Sojoudi and Javad Lavaei. “Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with
Underlying Graph Structure”. In: SIAM Journal on Optimization 24.4 (2014), pp. 1746-1778.



Proposed Condition Covers Condition (3)

If a given (P) satisfies the condition (3),
proposed condition can detect the exactness of its SDP relaxation.

Idea:
We develop conversion method of QCQPs such that

e The obtained QCQP has bipartite sparsity.

e The obtained QCQP satisfies proposed condition:
V(k, ) € &, the system (1) has no solutions.



Summary

e QCQPs whose G is bipartite were analyzed.
e New sufficient condition of v* = v, was proposed.
e |t was compared with three existing results.

Future works

e Approximated problems of QCQPs with exact SDP relaxation
e Analysis of QCQPs transformed from general problems

More information is available at arXiv:2204.09509,

“Exact SDP relaxations for quadratic programs with bipartite graph structures.”

Thank you for your attention!
17
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Cycle Basis

C:={C,...,Cs}: setof(simple)cycles
AAB : symmetric difference of A and B
AAB:=(A\B)U(B\ A4)

C is called a cycle basis of G

o be a minimum set

ﬁ, % 18

{ o allows any cycle in G to be expressed by A of its elements
—



Instance for SDP relaxation (QCQP side)

Example 1°

v* = min 2?4+ y?

st. y?2>1, 22 —ay>1, 22 +ay>1

From last two inequality,

zy >0 = Ty > -2y
} = 2*2> |afly| +1
zy<0 = -2y > Ty

° 2> 1.

2 +y2 > (|zlly| +1)+1>3

5Luo-Lecture14.



Instance for SDP relaxation (SDP side)

v*:min{x2+y2|y221, w2 —zy>1, $2+xy21}

0 0
=min{ z' [z 12 s
xT _/ / x>1
—1/2 1/2 0
0 0
] e X >1, X »
. 01
2minqleXx 1 1/2 1 1/2
=1 o X >1, / e X >1
\ -1/2 0 1/2 0

=min{X1 +Xo2| Xo2>1, X117 —X12>1, X1+ X12>1, X = O]

X =TIisfeasible — wipp <2<3<0"
20



QCQP’s Applications

Used in various problems:

e MAX-CUT, MAX-CLIQUE
e sensor (facility) location problem, pooling problem
e optimal flow problem, polynomial optimization

e (robust / sparse) principal component analysis, phase retrieval

21



Alternative Result for Theorem 3.7

Theorem 3.7’

Suppose Assumption 3.8 holds & G is a forest and connected graph.
Then, v* = v&,p if for all (k,¢) € &, the following system has no
solutions:

y >0, S(y) = O, [S(y)lke =0, (2?)

22



Estimation of Rank of Sparse Matrices

Let G([n], Ear) be the sparsity pattern graph of a matrix M.

For tree (connected forest) [Johnson et al., 2003, Corollary 3.9]

G is connected and forest
M = O = rank M >n —1
Mi; #0 V(i,7) € Em

For bipartite [Grone et al., 1992, Proposition 1]
G is connected and bipartite
M»>=0, M1>0 — rank M >n—1
Mij >0 V(Z,j) €&y

where 1 is the one vector [1 --- 1]T.
23



Rank of Solutions of Dual SDP Relaxation

Assume the strong duality holds.

Lemma [Burer and Ye, 2020]

(Dr) has a solution of rank (n — 1) or more — v* = vpp

Proof.

Let (X*, y*) be a solution satisfying X*S(y*) = O.
From Sylvester’s rank inequality,

rank(X™) < n — rank{S(y*)} + rank{X*S(y")}

24



Rank of Solutions of Dual SDP Relaxation

Assume the strong duality holds.

Lemma [Burer and Ye, 2020]

(Dr) has a solution of rank (n — 1) or more — v* = vpp

Proof.
Let (X*,y*) be a solution satisfying X*S(y*) = O.
From Sylvester’s rank inequality,
rank(X™) < n — rank{S(y*)} + rank{X*S(y")}
=n —rank{S(y")} <1. 0O
—_—

>n—1

24



Rank of Solutions of Dual SDP Relaxation

Assume the strong duality holds.

Lemma [Burer and Ye, 2020]

(Dr) has a solution of rank (n — 1) or more — v* = vpp

Proof.
Let (X*,y*) be a solution satisfying X*S(y*) = O.
From Sylvester’s rank inequality,
rank(X™) < n — rank{S(y*)} + rank{X*S(y")}
=n —rank{S(y")} <1. 0O
—_—

>n—1

Exactness can be considered from the dual side.

24



Exactness Condition on Existing Research

Non-homogeneous version of QCQP:

v* == min 2TQ% +2(¢°) @
xreR"

st. zTQPx +2¢?Tx <b,, pe[m],

Define S(y) = Q° + Y. 4,QP,  s(y) = qo + > Ypap-

Exactness Condition for Diagonal QCQPs [Burer and Ye, 2020]
Suppose Q°, Q', ..., Q™ are diagonal matrices.
If forall k € {1,...,n}, the following system is infeasible:

y >0, S(y) =0, [SW)ex =0, [s(y)]x = 0.
the SDP relaxation is exact.

25



Relationship between S(y) and G
Observatio

S(y)iy =0 VyeR™ V(i,j) €€

030
G

S()ij = QY +nQf + - + ym QY

= S(y) has the same sparsity structure as that of QCQP.

ex. -1 —24+y 0 2
24y Hy —1-uy 0
S(y) =
0 —l—yl 5+6y1 1+y1
2 0 1+ Y1 —4 — 2y1

26



e £={(1,2),(2,1)}
e Systems — only for (k,¢) = (1,2)

+34
Z/146

¢ S =0 = y>3+30~667

=8 =i

=0, —14+4y<0
1 _9 Y1

ylzov [

second inequality = —1+4y1>0 = V" = Ugpp

No solutions
27



e-Perturbed QCQPs

Let PA0OeS"” and €>0
v* = min { 2t Q% ‘ xTQPx <b, Vpc [m] } (P)

i}

vl = min{ x’ (QO + sP) T | ' QPx < bp Vp e [m] } (Pe)

e (PF) converges to (P)as e | 0.
o If P <0, thenv} <v*.

28



e-Perturbed QCQPs

Let PA0OeS"” and €>0
v* = min { 2t Q% ‘ xTQPx <b, Vpc [m] } (P)
]

vl = min{ x’ (QO + sP) T | ' QPx < bp Vp e [m] } (Pe)

/\
[ Preferred edges can be added to G ]

e (PF) converges to (P)as e | 0.
o If P <0, thenv} <v*.

28



Instance of Adding Edges

min{ x! (QO )m | a:TQla: <10 }

0 -2 0 0 5 2 00
-2 0 -1 0 2 -1 3 0
0 1 _
Q_0—150’Q 0 3 3 0|’
0 0 —4 0 0 4

29



Instance of Adding Edges

min { " (Q" +eP)z | zTQ'z <10 }

GO

0 -2 0 0 5 2 0 0 000 1

o -2 0 -1 0 Q1_2—130 p_|0 000
1o -1 5 ol o 3 30/ |oo0 0 1
0 0 —4 0 0 4 101 0

29



Perturbation and Exactness

{e+}721 € Ry : monotonically decreasing and tliglo =0

P # O : n x n negative semidefinite matrix

Lemma 4.1, Lemma 4.4, and Lemma 4.5

Suppose Assumption 3.6 holds, or
Assumption 3.8 and an additional one hold.

SDP relaxation of (P¢) is exact

* *k
UV = VUspp-
foralle =e1,¢9,...

30



Result for Disconnected Sparsity Structures

Let G(V, £) be the aggregated sparsity pattern graph of (P).
Theorem 4.2
Suppose Assumption 3.6 holds & G is a forest and connected.

Then, v* = v&p if, for all (k,¢) € £, the following system has no
solutions:

y >0, S(y) = O, [S(y)lk =0, (2?)

Theorem 4.6

Suppose Assumption 4.3 holds & G is a bipartite and connected.
Then, v* = v&p if, for all (k,¢) € &, the following system has no
solutions:




Result for Disconnected Sparsity Structures

Let G(V, £) be the aggregated sparsity pattern graph of (P).
Theorem 4.2
Suppose Assumption 3.6 holds & G is a forest.

Then, v* = v&yp if, for all (k,¢) € £, the following system has no
solutions:

y >0, S(y) = O, [S(y)lk =0, (2?)

Theorem 4.6

Suppose Assumption 4.3 holds & G is a bipartite.

Then, v* = v&p if, for all (k,¢) € &, the following system has no
solutions:



Sketch of Proof

Proof of Theorem 4.6.

1. Let F be the set of additional edges.
2. Define P < O as
— deg(7) ifi =7,
Pj=41 if (i,7) € For (j,i) € F,

0 otherwise,

3. (P?) satisfies assumptions of Theorem 3.10.
—> SDP relaxation of (P?) is exact.

4. Using Lemma 4.4 (4.5), we conclude v* = v§pp. O

32



Previous Works

Trust-region subproblems (TRS: QCQP with one constraint)

Extended TRS (TRS + linear constraints)

QCQPs with sign-definiteness

Exactness by faces of convex lagrangian multipliers

Rank-one generated cones

33



Essence of Proof (1)

Transform from general QCQPs to sparse QCQPs.

1. Objective function and constraints have the form:

D D D p
11 12 13 14
T |Qn Qn Q@ @
€T 3 w? vp?

Y4 Y4 Y4 Y4
31 32 33 34
Y4 Y4 P p
41 42 43 44
where n = 4, QP: symmetric matrices.

2. Assume remove edges (1,3) and (2,4)
because of Q7 <0, Q5 <O0.

34



Essence of Proof (2)

3. New variable z := —x is introduced.

4. It can be written as

Z1}1 €2 0 11?4 0 0 T 2¥13 0
Q% Q% Q% 0 0 0 0
T 0 §2 Qgs Q§4 ’%le 0 0 0
TNl @ 0 @ Q| 0 o o ol|®
3 .
z 0 0 —5Qf; 0 z|’
0 0 0 0
—-1or o0 0 0 ©
2 %31
| 0 0 0 0

5. Off-diagonal elements are all nonnegative
with some zero elements.

The obtained problem satisfies Theorem 4.6.
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