Exactly Solving a class of QCQPs
 via Semidefinite Relaxation with Bipartite Sparsity Patterns

```
Godai Azuma \({ }^{1}\) Mituhiro Fukuda \({ }^{2}\)
Sunyoung Kim \({ }^{3}\) Makoto Yamashita \({ }^{1}\)
\({ }^{1}\) Tokyo Institute of Technology \({ }^{2}\) Federal University of ABC \({ }^{3}\) Ewha Womans University
```

IWoCO (December 3rd, 2022)
Supported by JSPS KAKENHI Grant Number JP22J13893

QCQP: Quadratic Constrained Quadratic Programming

Let Q^{0}, \ldots, Q^{m} be $n \times n$ symmetric matrices, $\boldsymbol{b} \in \mathbb{R}^{m}$.

$$
\begin{aligned}
v^{*}:=\min _{\boldsymbol{x} \in \mathbb{R}^{n}} & \boldsymbol{x}^{\mathrm{T}} Q^{0} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq b_{p}, \quad p \in[m]:=\{1, \ldots, m\},
\end{aligned}
$$

Applications

MAX-CUT, sensor location problems, optimal flow problems,...

- (\mathcal{P}) is a homogeneous form (no linear terms).
- Calculation of v^{*} is NP-hard.

Semidefinite Programming (SDP) Relaxation

$A \bullet B$: Frobenius (component-wise) inner product of A and B
$X \succeq O$: Positive semidefinite

$$
\begin{aligned}
v^{*} & =\min \left\{\boldsymbol{x}^{\mathrm{T}} Q^{0} \boldsymbol{x} \left\lvert\, \begin{array}{ll}
\boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq b_{p} & \forall p \in[m]\} \\
& =\min \left\{Q^{0} \bullet X \left\lvert\, \begin{array}{cc}
X=\boldsymbol{x} \boldsymbol{x}^{\mathrm{T}} \\
Q^{p} \bullet X \leq b_{p} & \forall p \in[m]
\end{array}\right.\right\} \\
& \geq \min \left\{Q^{0} \bullet X \left\lvert\, \begin{array}{c}
X \succeq \boldsymbol{x} \boldsymbol{x}^{\mathrm{T}} \\
Q^{p} \bullet X \leq b_{p}
\end{array} \quad \forall p \in[m]\right.\right.
\end{array}\right.\right\} \\
& =v_{\mathrm{SDP}}^{*}
\end{aligned}
$$

$v_{\text {SP }}^{*}$ can be calculated in polynomial time.

Exactness of SDP Relaxation

$$
v^{*} \geq \min \left\{\begin{array}{l|l}
Q^{0} \bullet X & \begin{array}{l}
X \succeq O \\
Q^{p} \bullet X \leq b_{p} \quad \forall p \in[m]
\end{array}
\end{array}\right\}=v_{\mathrm{SDP}}^{*}
$$

= holds
\Longleftrightarrow SDP relaxation is exact

Interested in

What conditions of QCQPs guarantee the exact SDP relaxation?

$$
\left(v^{*}=v_{\mathrm{SDP}}^{*}\right)
$$

\Longrightarrow classify QCQPs as tractable or not.

Exactness of SDP Relaxation

$$
v^{*} \geq \min \left\{\begin{array}{l|l}
Q^{0} \bullet X & \begin{array}{l}
X \succeq O \\
Q^{p} \bullet X \leq b_{p} \quad \forall p \in[m]
\end{array}
\end{array}\right\}=v_{\mathrm{SDP}}^{*}
$$

$=$ holds
\Longleftrightarrow SDP relaxation is exact
an optimal solution X^{*} of rank-1 exists

Interested in

What conditions of QCQPs guarantee the exact SDP relaxation?

$$
\left(v^{*}=v_{\mathrm{SDP}}^{*}\right)
$$

\Longrightarrow classify QCQPs as tractable or not.

Outline

- Motivation
- Sparsity structures of QCQPs
- Exactness condition for bipartite sparsity structures
- Example
- Sign-definite QCQPs
- Comparison with existing research
- Summary

Sparsity Pattern of QCQP

Aggregated Sparsity Pattern of QCQP: $\quad G(\mathcal{V}, \mathcal{E})$

$$
\begin{aligned}
& \mathcal{V}:=[n], \\
& \mathcal{E}:=\left\{(i, j) \in \mathcal{V}^{2} \mid i \neq j, Q_{i j}^{p} \neq 0 \text { for some } p \in\{0, \ldots, m\}\right\} .
\end{aligned}
$$

$$
\text { ex. } \min \left\{\boldsymbol{x}^{\mathrm{T}} Q^{0} \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{1} \boldsymbol{x} \leq 10\right\}
$$

$$
Q^{0}=\left[\begin{array}{cccc}
0 & -2 & 0 & 2 \\
-2 & 0 & -1 & 0 \\
0 & -1 & 5 & 1 \\
2 & 0 & 1 & -4
\end{array}\right], \quad Q^{1}=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
1 & 4 & -1 & 0 \\
0 & -1 & 6 & 1 \\
0 & 0 & 1 & -2
\end{array}\right] .
$$

Forest and Bipartite Graph

Let $G(\mathcal{V}, \mathcal{E})$ be a nonempty graph.

Cycle

G	Odd length	Even length	\#Components
Tree		1	
Forest		≥ 1	
Bipartite	\checkmark	≥ 1	

Tree

Forest

Bipartite

Dual of SDP Relaxation

$$
\begin{equation*}
v_{\mathrm{DSDP}}^{*}:=\max \left\{-\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} \mid \boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O\right\} \tag{R}
\end{equation*}
$$

where matrix function over \mathbb{R}^{m} :

$$
S(\boldsymbol{y}):=Q^{0}+\sum_{p=1}^{m} y_{p} Q^{p}
$$

When a given QCQP has the sparsity pattern $G(\mathcal{V}, \mathcal{E})$,

- $S(y)_{k \ell}=0$ if $(k, \ell) \notin \mathcal{E}$.
$\circ \Longrightarrow S(y)$ follows the same sparsity \mathcal{E}.

Assumption in This Talk

Assumption

(i) Both $\left(\mathcal{P}_{\mathrm{R}}\right)$ and $\left(\mathcal{D}_{\mathrm{R}}\right)$ have optimal solutions, and
(ii) At least one of the following two conditions holds:
(a) the feasible region of $\left(\mathcal{P}_{\mathrm{R}}\right)$ is bounded, or
(b) the set of optimal solutions for $\left(\mathcal{D}_{R}\right)$ is bounded.

- strong duality holds: (Kim and Kojima ${ }^{1}$)
$\exists\left(X^{*}, \boldsymbol{y}^{*}\right)$: solutions of $\left(\mathcal{P}_{\mathrm{R}}\right)$ and $\left(\mathcal{D}_{\mathrm{R}}\right)$ such that

$$
X^{*} S\left(\boldsymbol{y}^{*}\right)=O
$$

[^0]
Sufficient Conditions for Exactness

$v^{*}=v_{\mathrm{SDP}}^{*}$
$\Longleftrightarrow\left(\mathcal{P}_{\mathrm{R}}\right)$ has an optimal X^{*} satisfying $\operatorname{rank}\left(X^{*}\right) \leq 1$
$\Longleftarrow\left(\mathcal{D}_{\mathrm{R}}\right)$ has an optimal \boldsymbol{y}^{*} satisfying $\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\} \geq n-1$ (under the strong duality)
$\Longleftarrow \operatorname{rank}\{S(\boldsymbol{y})\} \geq n-1 \quad \forall \boldsymbol{y} \geq \mathbf{0}$ satisfying $S(\boldsymbol{y}) \succeq O$

$$
\Longleftarrow\left\{\begin{array}{l}
S(\boldsymbol{y}) \succeq O, S(\boldsymbol{y}) \mathbf{1}>\mathbf{0}, \\
S(\boldsymbol{y})_{i j}>0 \forall(i, j) \in \mathcal{E} \quad[\text { Grone et al., 1992] }
\end{array}\right.
$$

Since $\boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O, S(\boldsymbol{y})_{i j} \leq 0$ has no solutions, we conclude $S(\boldsymbol{y})_{i j}>0 \forall(i, j) \in \mathcal{E}$.

Sufficient Conditions for Exactness

$$
v^{*}=v_{\mathrm{SDP}}^{*}
$$

$\Longleftrightarrow\left(\mathcal{P}_{\mathrm{R}}\right)$ has an optimal X^{*} satisfying $\operatorname{rank}\left(X^{*}\right) \leq 1$
$\Longleftarrow\left(\mathcal{D}_{\mathrm{R}}\right)$ has an optimal \boldsymbol{y}^{*} satisfying $\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\} \geq n-1$ (under the strong duality)
$\Longleftarrow \operatorname{rank}\{S(\boldsymbol{y})\} \geq n-1 \quad \forall \boldsymbol{y} \geq \mathbf{0}$ satisfying $S(\boldsymbol{y}) \succeq O$

$$
\Longleftarrow\left\{\begin{array}{l}
S(\boldsymbol{y}) \succeq O, S(\boldsymbol{y}) \mathbf{1}>\mathbf{0}, \\
S(\boldsymbol{y})_{i j}>0 \forall(i, j) \in \mathcal{E} \quad[\text { Grone et al., 1992] }
\end{array}\right.
$$

Since $\boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O, S(\boldsymbol{y})_{i j} \leq 0$ has no solutions, we conclude $S(\boldsymbol{y})_{i j}>0 \forall(i, j) \in \mathcal{E}$.

Sufficient Conditions for Exactness

$$
v^{*}=v_{\mathrm{SDP}}^{*}
$$

$\Longleftrightarrow\left(\mathcal{P}_{\mathrm{R}}\right)$ has an optimal X^{*} satisfying $\operatorname{rank}\left(X^{*}\right) \leq 1$
$\Longleftarrow\left(\mathcal{D}_{\mathrm{R}}\right)$ has an optimal \boldsymbol{y}^{*} satisfying $\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\} \geq n-1$ (under the strong duality)
$\Longleftarrow \operatorname{rank}\{S(\boldsymbol{y})\} \geq n-1 \quad \forall \boldsymbol{y} \geq \mathbf{0}$ satisfying $S(\boldsymbol{y}) \succeq O$

$$
\Longleftarrow\left\{\begin{array}{l}
S(\boldsymbol{y}) \succeq O, S(\boldsymbol{y}) \mathbf{1}>\mathbf{0}, \\
S(\boldsymbol{y})_{i j}>0 \forall(i, j) \in \mathcal{E} \quad[\text { Grone et al., 1992] }
\end{array}\right.
$$

Since $\boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O, S(\boldsymbol{y})_{i j} \leq 0$ has no solutions, we conclude $S(\boldsymbol{y})_{i j}>0 \forall(i, j) \in \mathcal{E}$.

New Exactness Condition

Suppose G is a bipartite.

Exactness Condition for QCQPs with Bipartite Structures

For all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$
\begin{equation*}
\boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{k \ell} \leq 0 \tag{1}
\end{equation*}
$$

- Checking $|\mathcal{E}|$ feasibility systems is required.
- (1) is a SDP, i.e., tractable.

Example 2

$$
\begin{aligned}
\min & \boldsymbol{x}^{\mathrm{T}} Q^{0} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{x}^{\mathrm{T}} Q^{1} \boldsymbol{x} \leq 10, \quad \boldsymbol{x}^{\mathrm{T}} Q^{2} \boldsymbol{x} \leq 10, \quad \boldsymbol{x}^{\mathrm{T}} Q^{3} \boldsymbol{x} \leq 5
\end{aligned}
$$

where

$$
\begin{aligned}
& Q^{0}=\left[\begin{array}{cccc}
0 & -2 & 0 & 2 \\
-2 & 0 & -1 & 0 \\
0 & -1 & 5 & 1 \\
2 & 0 & 1 & -4
\end{array}\right], Q^{1}=\left[\begin{array}{cccc}
5 & 2 & 0 & 1 \\
2 & -1 & 3 & 0 \\
0 & 3 & 3 & -1 \\
1 & 0 & -1 & 4
\end{array}\right], \\
& Q^{2}=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
1 & 4 & -1 & 0 \\
0 & -1 & 6 & 1 \\
0 & 0 & 1 & -2
\end{array}\right], Q^{3}=\left[\begin{array}{cccc}
4 & -1 & 0 & 0 \\
-1 & -2 & 1 & 0 \\
0 & 1 & -2 & 4 \\
0 & 0 & 4 & 2
\end{array}\right] .
\end{aligned}
$$

Sparsity of Example 2

$$
\begin{aligned}
& Q^{0}=\left[\begin{array}{cccc}
0 & -2 & 0 & 2 \\
-2 & 0 & -1 & 0 \\
0 & -1 & 5 & 1 \\
2 & 0 & 1 & -4
\end{array}\right], Q^{1}=\left[\begin{array}{cccc}
5 & 2 & 0 & 1 \\
2 & -1 & 3 & 0 \\
0 & 3 & 3 & -1 \\
1 & 0 & -1 & 4
\end{array}\right], \\
& Q^{2}=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
1 & 4 & -1 & 0 \\
0 & -1 & 6 & 1 \\
0 & 0 & 1 & -2
\end{array}\right], Q^{3}=\left[\begin{array}{cccc}
4 & -1 & 0 & 0 \\
-1 & -2 & 1 & 0 \\
0 & 1 & -2 & 4 \\
0 & 0 & 4 & 2
\end{array}\right] .
\end{aligned}
$$

$$
\mathcal{E}=\left\{\begin{array}{l}
(1,2),(2,1),(1,4),(4,1), \\
(2,3),(3,2),(3,4),(4,3)
\end{array}\right\} .
$$

Systems of Example 2

Consider the problem for $(k, \ell) \in \mathcal{E}$:

$$
\begin{align*}
\mu^{*}=\min & S(\boldsymbol{y})_{k \ell} \tag{2}\\
\text { s.t. } & \boldsymbol{y} \geq \mathbf{0}, S(\boldsymbol{y}) \succeq O .
\end{align*}
$$

(k, ℓ)	$(1,2)$	$(2,3)$	$(1,4)$	$(3,4)$
μ^{*}	18.58	12.84	8.897	0.3215

All positives \Longrightarrow the following systems have no solutions:

$$
\begin{equation*}
\boldsymbol{y} \geq \mathbf{0}, S(\boldsymbol{y}) \succeq O, S(\boldsymbol{y})_{k \ell} \leq 0 \tag{1}
\end{equation*}
$$

Comparison of Exactness Conditions

	Graph G	Systems to check
Burer $\&$ Ye 2	no edges	$\mathcal{S}_{=}$for all (k, ℓ) such that $k=\ell$
Azuma et al. ${ }^{3}$	forest	$\mathcal{S}_{=}$for all $(k, \ell) \in \mathcal{E}$
Proposed method	bipartite	\mathcal{S}_{\leq}for all $(k, \ell) \in \mathcal{E}$

where systems are:

a LP or a SDP: tractable problem

$$
\text { find } \boldsymbol{y} \geq 0 \text { such that } \quad S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{k \ell} \diamond 0 \text {. }
$$

[^1]
Sign-definite QCQP

Definition of Sign-definite QCQP

- For all (i, j), the set $T_{i j}:=\left\{Q_{i j}^{0}, \ldots, Q_{i j}^{m}\right\}$ is sign-definite
- QCQPs with no sparsity

all nonnegative or all nonpositive

Theorem 2^{4}

[Sojoudi and Lavaei, 2014]

$$
\prod_{(i, j) \in \mathcal{C}} \sigma_{i j}=(-1)^{|\mathcal{C}|} \quad \text { for all cycles } \mathcal{C} \text { in } G
$$

where

$$
\sigma_{i j}= \begin{cases}+1 & \text { (} \left.T_{i j} \text { has all nonnegative }\right) \\ -1 & \text { (} \left.T_{i j} \text { has all nonpositive }\right)\end{cases}
$$

[^2]
Proposed Condition Covers Condition (3)

Proposition

If a given (\mathcal{P}) satisfies the condition (3),
proposed condition can detect the exactness of its SDP relaxation.

Idea:
We develop conversion method of QCQPs such that

- The obtained QCQP has bipartite sparsity.
- The obtained QCQP satisfies proposed condition: $\forall(k, \ell) \in \mathcal{E}$, the system (1) has no solutions.

Summary

Summary

- QCQPs whose G is bipartite were analyzed.
- New sufficient condition of $v^{*}=v_{\text {SDP }}^{*}$ was proposed.
- It was compared with three existing results.

Future works

- Approximated problems of QCQPs with exact SDP relaxation
- Analysis of QCQPs transformed from general problems

More information is available at arXiv:2204.09509,
"Exact SDP relaxations for quadratic programs with bipartite graph structures."
Thank you for your attention!

Backup Slides

Cycle Basis

$\mathcal{C}:=\left\{\mathcal{C}_{1}, \ldots, \mathcal{C}_{\kappa}\right\}: \quad$ set of (simple) cycles
$A \triangle B$: symmetric difference of A and B

$$
A \triangle B:=(A \backslash B) \cup(B \backslash A)
$$

\mathcal{C} is called a cycle basis of G
$\Longleftrightarrow\left\{\begin{array}{l}\circ \text { allows any cycle in } G \text { to be expressed by } \triangle \text { of its elements } \\ \circ \text { be a minimum set }\end{array}\right.$

Ex.

Instance for SDP relaxation (QCQP side)

Example 1^{5}

$$
\begin{aligned}
v^{*}=\min & x^{2}+y^{2} \\
\text { s.t. } & y^{2} \geq 1, x^{2}-x y \geq 1, x^{2}+x y \geq 1
\end{aligned}
$$

From last two inequality,

$$
\begin{aligned}
& \left.\begin{array}{rlrr}
x y>0 & \Longrightarrow \quad x y & > & -x y \\
x y<0 & \Longrightarrow & -x y & >
\end{array} \quad x y\right\} \quad \Longrightarrow \quad x^{2} \geq|x||y|+1 \\
& x^{2} \geq 1 . \\
& \therefore \quad x^{2}+y^{2} \geq(|x||y|+1)+1 \geq 3
\end{aligned}
$$

[^3]
Instance for SDP relaxation (SDP side)

$$
\left.\begin{array}{rl}
v^{*} & =\min \left\{x^{2}+y^{2} \mid y^{2} \geq 1, x^{2}-x y \geq 1, x^{2}+x y \geq 1\right\} \\
& =\min \left\{\boldsymbol{x}^{\mathrm{T}} I \boldsymbol{x} \left\lvert\, \boldsymbol{x}^{\mathrm{T}}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \boldsymbol{x} \geq 1\right.,\right. \\
\boldsymbol{x}^{\mathrm{T}}\left[\begin{array}{cc}
1 & -1 / 2 \\
-1 / 2 & 0
\end{array}\right] \boldsymbol{x} \geq 1, \boldsymbol{x}^{\mathrm{T}}\left[\begin{array}{cc}
1 & 1 / 2 \\
1 / 2 & 0
\end{array}\right] \boldsymbol{x} \geq 1
\end{array}\right\}
$$

$$
X=I \text { is feasible } \Longrightarrow v_{\mathrm{SDP}}^{*} \leq 2<3 \leq v^{*}
$$

QCQP's Applications

Used in various problems:

- MAX-CUT, MAX-CLIQUE
- sensor (facility) location problem, pooling problem
- optimal flow problem, polynomial optimization
- (robust / sparse) principal component analysis, phase retrieval

Alternative Result for Theorem 3.7

Theorem 3.7'

Suppose Assumption 3.8 holds \& G is a forest and connected graph.
Then, $v^{*}=v_{\text {SDP }}^{*}$ if for all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$
\begin{equation*}
\boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{k \ell}=0, \tag{??}
\end{equation*}
$$

Estimation of Rank of Sparse Matrices

Let $G\left([n], \mathcal{E}_{M}\right)$ be the sparsity pattern graph of a matrix M.

For tree (connected forest)
 [Johnson et al., 2003, Corollary 3.9]

$$
\left.\begin{array}{l}
G \text { is connected and forest } \\
M \succeq O \\
M_{i j} \neq 0 \quad \forall(i, j) \in \mathcal{E}_{M}
\end{array}\right\} \Rightarrow \operatorname{rank} M \geq n-1
$$

For bipartite

$$
\left.\begin{array}{l}
G \text { is connected and bipartite } \\
M \succeq O, M \mathbf{1}>0 \\
M_{i j}>0 \quad \forall(i, j) \in \mathcal{E}_{M}
\end{array}\right\} \Longrightarrow \operatorname{rank} M \geq n-1
$$

where 1 is the one vector $[1 \cdots 1]^{\mathrm{T}}$.

Rank of Solutions of Dual SDP Relaxation

Assume the strong duality holds.

Lemma
 [Burer and Ye, 2020]

$\left(\mathcal{D}_{\mathrm{R}}\right)$ has a solution of rank $(n-1)$ or more $\Longrightarrow v^{*}=v_{\mathrm{SDP}}^{*}$

Proof.

Let $\left(X^{*}, \boldsymbol{y}^{*}\right)$ be a solution satisfying $X^{*} S\left(\boldsymbol{y}^{*}\right)=O$.
From Sylvester's rank inequality,

$$
\operatorname{rank}\left(X^{*}\right) \leq n-\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\}+\operatorname{rank}\left\{X^{*} S\left(\boldsymbol{y}^{*}\right)\right\}
$$

Rank of Solutions of Dual SDP Relaxation

Assume the strong duality holds.

Lemma
 [Burer and Ye, 2020]

$\left(\mathcal{D}_{\mathrm{R}}\right)$ has a solution of rank $(n-1)$ or more $\Longrightarrow v^{*}=v_{\mathrm{SDP}}^{*}$

Proof.

Let $\left(X^{*}, \boldsymbol{y}^{*}\right)$ be a solution satisfying $X^{*} S\left(\boldsymbol{y}^{*}\right)=O$.
From Sylvester's rank inequality,

$$
\begin{aligned}
\operatorname{rank}\left(X^{*}\right) & \leq n-\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\}+\operatorname{rank}\left\{X^{*} S\left(\boldsymbol{y}^{*}\right)\right\} \\
& =n-\underbrace{\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\}}_{\geq n-1} \quad \leq 1 . \square
\end{aligned}
$$

Rank of Solutions of Dual SDP Relaxation

Assume the strong duality holds.

Lemma
 [Burer and Ye, 2020]

$\left(\mathcal{D}_{\mathrm{R}}\right)$ has a solution of rank $(n-1)$ or more $\Longrightarrow v^{*}=v_{\mathrm{SDP}}^{*}$

Proof.
Let $\left(X^{*}, \boldsymbol{y}^{*}\right)$ be a solution satisfying $X^{*} S\left(\boldsymbol{y}^{*}\right)=O$.
From Sylvester's rank inequality,

$$
\begin{aligned}
\operatorname{rank}\left(X^{*}\right) & \leq n-\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\}+\operatorname{rank}\left\{X^{*} S\left(\boldsymbol{y}^{*}\right)\right\} \\
& =n-\underbrace{\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\}}_{\geq n-1} \quad \leq 1 . \square
\end{aligned}
$$

Exactness can be considered from the dual side.

Exactness Condition on Existing Research

Non-homogeneous version of QCQP:

$$
\begin{aligned}
v^{*}:=\min _{\boldsymbol{x} \in \mathbb{R}^{n}} & \boldsymbol{x}^{\mathrm{T}} Q^{0} \boldsymbol{x}+2\left(\boldsymbol{q}^{0}\right)^{\mathrm{T}} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x}+2 \boldsymbol{q}^{p \mathrm{~T}} \boldsymbol{x} \leq b_{p}, \quad p \in[m]
\end{aligned}
$$

Define $S(y)=Q^{0}+\sum y_{p} Q^{p}, \quad s(y)=q_{0}+\sum y_{p} q_{p}$.

Exactness Condition for Diagonal QCQPs

Suppose $Q^{0}, Q^{1}, \ldots, Q^{m}$ are diagonal matrices.
If for all $k \in\{1, \ldots, n\}$, the following system is infeasible:

$$
y \geq 0, S(y) \succeq 0,[S(y)]_{k k}=0,[s(y)]_{k}=0 .
$$

the SDP relaxation is exact.

Relationship between $S(\boldsymbol{y})$ and G

Observation (i, j) element

$$
S(\boldsymbol{y})_{i j}=0 \quad \forall \boldsymbol{y} \in \mathbb{R}^{m} \quad \forall(i, j) \notin \mathcal{E}
$$

$$
\because \quad S(\boldsymbol{y})_{i j}=Q_{i j}^{0}+y_{1} Q_{i j}^{1}+\cdots+y_{m} Q_{i j}^{m}
$$

$\Longrightarrow S(\boldsymbol{y})$ has the same sparsity structure as that of QCQP.
ex.

$$
S(\boldsymbol{y})=\left[\begin{array}{cccc}
-y_{1} & -2+y_{1} & 0 & 2 \\
-2+y_{1} & +4 y_{1} & -1-y_{1} & 0 \\
0 & -1-y_{1} & 5+6 y_{1} & 1+y_{1} \\
2 & 0 & 1+y_{1} & -4-2 y_{1}
\end{array}\right]
$$

Ex. $\quad n=2, \quad m=1$,

$$
\min . \quad \boldsymbol{x}^{\mathrm{T}}\left[\begin{array}{ll}
-3 & -1 \\
-1 & -2
\end{array}\right] \boldsymbol{x} \quad \text { s.t. } \quad \boldsymbol{x}^{\mathrm{T}}\left[\begin{array}{ll}
3 & 4 \\
4 & 6
\end{array}\right] \boldsymbol{x} \leq 1
$$

- $\mathcal{E}=\{(1,2),(2,1)\}$
- Systems - only for $(k, \ell)=(1,2)$

$$
y_{1} \geq 0, \quad\left[\begin{array}{ll}
-3 & -1 \\
-1 & -2
\end{array}\right]+y_{1}\left[\begin{array}{ll}
3 & 4 \\
4 & 6
\end{array}\right] \succeq O, \quad-1+4 y_{1} \leq 0
$$

- $S(y) \succeq O \quad \Longleftrightarrow \quad y_{1} \geq 3+\frac{3 \sqrt{6}}{2} \simeq 6.67$
second inequality $\Longrightarrow-1+4 y_{1}>0 \quad \Longrightarrow v^{*}=v_{\text {SDP }}^{*}$
No solutions

ε-Perturbed QCQPs

Let $P \neq O \in \mathbb{S}^{n}$ and $\varepsilon>0$

$$
\begin{gathered}
v^{*}=\min \left\{\boldsymbol{x}^{\mathrm{T}} Q^{0} \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq b_{p} \quad \forall p \in[m]\right\} \\
\downarrow
\end{gathered}
$$

$$
v_{\varepsilon}^{*}=\min \left\{\boldsymbol{x}^{\mathrm{T}}\left(Q^{0}+\varepsilon P\right) \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq b_{p} \quad \forall p \in[m]\right\}
$$

- $\left(\mathcal{P}^{\varepsilon}\right)$ converges to (\mathcal{P}) as $\varepsilon \downarrow 0$.
- If $P \preceq O$, then $v_{\varepsilon}^{*} \leq v^{*}$.

ε-Perturbed QCQPs

Let $P \neq O \in \mathbb{S}^{n}$ and $\varepsilon>0$

$$
\begin{equation*}
v^{*}=\min \left\{\boldsymbol{x}^{\mathrm{T}} Q^{0} \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq b_{p} \quad \forall p \in[m]\right\} \tag{P}
\end{equation*}
$$

$$
v_{\varepsilon}^{*}=\min \left\{\boldsymbol{x}^{\mathrm{T}}\left(Q^{0}+\varepsilon P\right) \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq b_{p} \quad \forall p \in[m]\right\}
$$

- $\left(\mathcal{P}^{\varepsilon}\right)$ converges to (\mathcal{P}) as $\varepsilon \downarrow 0$.
- If $P \preceq O$, then $v_{\varepsilon}^{*} \leq v^{*}$.

Instance of Adding Edges

 $\min \left\{\boldsymbol{x}^{\mathrm{T}}\left(Q^{0} \quad\right) \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{1} \boldsymbol{x} \leq 10\right\}$

$$
Q^{0}=\left[\begin{array}{cccc}
0 & -2 & 0 & 0 \\
-2 & 0 & -1 & 0 \\
0 & -1 & 5 & 0 \\
0 & 0 & 0 & -4
\end{array}\right], \quad Q^{1}=\left[\begin{array}{cccc}
5 & 2 & 0 & 0 \\
2 & -1 & 3 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right],
$$

Instance of Adding Edges

$\min \left\{\boldsymbol{x}^{\mathrm{T}}\left(Q^{0}+\varepsilon P\right) \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{1} \boldsymbol{x} \leq 10\right\}$

$$
Q^{0}=\left[\begin{array}{cccc}
0 & -2 & 0 & 0 \\
-2 & 0 & -1 & 0 \\
0 & -1 & 5 & 0 \\
0 & 0 & 0 & -4
\end{array}\right], \quad Q^{1}=\left[\begin{array}{cccc}
5 & 2 & 0 & 0 \\
2 & -1 & 3 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right], \quad P=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] .
$$

Perturbation and Exactness

$\left\{\varepsilon_{t}\right\}_{t=1}^{\infty} \subseteq \mathbb{R}_{+}$: monotonically decreasing and $\lim _{t \rightarrow \infty} \varepsilon_{t}=0$ $P \neq O: n \times n$ negative semidefinite matrix

Lemma 4.1, Lemma 4.4, and Lemma 4.5
Suppose Assumption 3.6 holds, or
Assumption 3.8 and an additional one hold.
SDP relaxation of $\left(\mathcal{P}^{\varepsilon}\right)$ is exact

$$
\Longrightarrow \quad v^{*}=v_{\mathrm{SDP}}^{*}
$$

Result for Disconnected Sparsity Structures

Let $G(\mathcal{V}, \mathcal{E})$ be the aggregated sparsity pattern graph of (\mathcal{P}).

Theorem 4.2

Suppose Assumption 3.6 holds \& G is a forest and connected.
Then, $v^{*}=v_{\text {SDP }}^{*}$ if, for all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$
\begin{equation*}
\boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{k \ell}=0, \tag{??}
\end{equation*}
$$

Theorem 4.6

Suppose Assumption 4.3 holds \& G is a bipartite and connected. Then, $v^{*}=v_{\text {SDP }}^{*}$ if, for all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$
\begin{equation*}
\boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{k \ell} \leq 0 \tag{1}
\end{equation*}
$$

Result for Disconnected Sparsity Structures

Let $G(\mathcal{V}, \mathcal{E})$ be the aggregated sparsity pattern graph of (\mathcal{P}).

Theorem 4.2

Suppose Assumption 3.6 holds \& G is a forest.
Then, $v^{*}=v_{\text {SDP }}^{*}$ if, for all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$
\begin{equation*}
\boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{k \ell}=0 \tag{??}
\end{equation*}
$$

Theorem 4.6

Suppose Assumption 4.3 holds \& G is a bipartite.
Then, $v^{*}=v_{\text {SDP }}^{*}$ if, for all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$
\begin{equation*}
\boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{k \ell} \leq 0 \tag{1}
\end{equation*}
$$

Sketch of Proof

Proof of Theorem 4.6.

1. Let \mathcal{F} be the set of additional edges.
2. Define $P \preceq O$ as

$$
P_{i j}= \begin{cases}-\operatorname{deg}(i) & \text { if } i=j \\ 1 & \text { if }(i, j) \in \mathcal{F} \text { or }(j, i) \in \mathcal{F} \\ 0 & \text { otherwise }\end{cases}
$$

3. $\left(\mathcal{P}^{\varepsilon}\right)$ satisfies assumptions of Theorem 3.10.
\Longrightarrow SDP relaxation of $\left(\mathcal{P}^{\varepsilon}\right)$ is exact.
4. Using Lemma 4.4 (4.5), we conclude $v^{*}=v_{\mathrm{SDP}}^{*}$.

Previous Works

- Trust-region subproblems (TRS: QCQP with one constraint) Yakubovich[1971]
- Extended TRS (TRS + linear constraints) Jeyakumar[2014], Hsia and Sheu[2013], Locatelli[2016]
- QCQPs with sign-definiteness Kim and Kojima[2003], Sojoudi and Lavaei[2014]
- Exactness by faces of convex lagrangian multipliers Wang and Kılıç-Karzan[2021]
- Rank-one generated cones

Argue, Kılınç-Karzan and Wang[2020]

Essence of Proof (1)

Transform from general QCQPs to sparse QCQPs.

1. Objective function and constraints have the form:

$$
\boldsymbol{x}^{\mathrm{T}}\left[\begin{array}{cccc}
Q_{11}^{p} & Q_{12}^{p} & Q_{13}^{p} & Q_{14}^{p} \\
Q_{21}^{p} & Q_{22}^{p} & Q_{23}^{p} & Q_{24}^{p} \\
Q_{31}^{p} & Q_{32}^{p} & Q_{33}^{p} & Q_{34}^{p} \\
Q_{41}^{p} & Q_{42}^{p} & Q_{43}^{p} & Q_{44}^{p}
\end{array}\right] \boldsymbol{x}, \quad \forall p,
$$

where $n=4, Q^{p}$: symmetric matrices.
2. Assume remove edges $(1,3)$ and $(2,4)$ because of $Q_{13}^{p}<0, \quad Q_{24}^{p}<0$.

Essence of Proof (2)

3. New variable $z:=-x$ is introduced.
4. It can be written as

$$
\left[\boldsymbol{x} \boldsymbol{z}^{\mathrm{T}}\left[\begin{array}{cccc|cccc}
Q_{11}^{p} & Q_{12}^{p} & 0 & Q_{14}^{p} & 0 & 0 & -\frac{1}{2} Q_{13}^{p} & 0 \\
Q_{21}^{p} & Q_{22}^{p} & Q_{23}^{p} & 0 & 0 & 0 & 0 & 0 \\
0 & Q_{32}^{p} & Q_{33}^{p} & Q_{34}^{p} & -\frac{1}{2} Q_{31}^{p} & 0 & 0 & 0 \\
Q_{41}^{p} & 0 & Q_{43}^{p} & Q_{44}^{p} & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & -\frac{1}{2} Q_{13}^{p} & 0 & & & & \\
0 & 0 & 0 & 0 & & 0 & & \\
-\frac{1}{2} Q_{31}^{p} & 0 & 0 & 0 & & & \\
0 & 0 & 0 & 0 & & & & \\
\boldsymbol{z}
\end{array}\right], \forall p .\right.
$$

5. Off-diagonal elements are all nonnegative with some zero elements.

The obtained problem satisfies Theorem 4.6.

[^0]: ${ }^{1}$ Sunyoung Kim and Masakazu Kojima. Strong duality of a conic optimization problem with a single hyperplane and two cone constraints. arXiv:2111.03251v2. 2021.

[^1]: ${ }^{2}$ Samuel Burer and Yinyu Ye. "Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs". In: Mathematical Programming 181.1 (2020), pp. 1-17.
 ${ }^{3}$ Godai Azuma et al. "Exact SDP Relaxations of Quadratically Constrained Quadratic Programs with Forest Structures". In: Journal of Global Optimization 82.2 (2022), pp. 243-262.

[^2]: ${ }^{4}$ Somayeh Sojoudi and Javad Lavaei. "Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure". In: SIAM Journal on Optimization 24.4 (2014), pp. 1746-1778.

[^3]: ${ }^{5}$ Luo-Lecture14.

