Exactly Solving a class of QCQPs

via Semidefinite Relaxation with Bipartite Sparsity Patterns

Godai Azuma1Mituhiro Fukuda2Sunyoung Kim3Makoto Yamashita1

¹Tokyo Institute of Technology ²Federal University of ABC ³Ewha Womans University

IWoCO (December 3rd, 2022) Supported by JSPS KAKENHI Grant Number JP22J13893 Let Q^0, \ldots, Q^m be $n \times n$ symmetric matrices, $b \in \mathbb{R}^m$.

$$\begin{aligned} v^* &\coloneqq \min_{\boldsymbol{x} \in \mathbb{R}^n} \quad \boldsymbol{x}^{\mathrm{T}} Q^0 \boldsymbol{x} \\ &\text{s.t.} \quad \boldsymbol{x}^{\mathrm{T}} Q^p \boldsymbol{x} \le b_p, \quad p \in [m] \coloneqq \{1, \dots, m\}, \end{aligned}$$
 (P)

Applications

MAX-CUT, sensor location problems, optimal flow problems,...

- (\mathcal{P}) is a homogeneous form (no linear terms).
- Calculation of v^* is NP-hard.

 $A \bullet B$: Frobenius (component-wise) inner product of A and B $X \succeq O$: Positive semidefinite

$$v^{*} = \min \left\{ \boldsymbol{x}^{\mathrm{T}} Q^{0} \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq b_{p} \quad \forall p \in [m] \right\}$$
$$= \min \left\{ Q^{0} \bullet X \mid \begin{array}{c} \boldsymbol{X} = \boldsymbol{x} \boldsymbol{x}^{\mathrm{T}} \\ Q^{p} \bullet X \leq b_{p} \quad \forall p \in [m] \end{array} \right\}$$
$$\geq \min \left\{ Q^{0} \bullet X \mid \begin{array}{c} \boldsymbol{X} \succeq \boldsymbol{x} \boldsymbol{x}^{\mathrm{T}} \\ Q^{p} \bullet X \leq b_{p} \quad \forall p \in [m] \end{array} \right\} \qquad (\mathcal{P}_{\mathrm{R}})$$
$$=: v_{\mathrm{SDP}}^{*}$$

 $v^*_{\rm SDP}$ can be caluculated in polynomial time.

$$v^* \ge \min \left\{ \begin{array}{c|c} Q^0 \bullet X & X \succeq O \\ Q^p \bullet X \le b_p & \forall p \in [m] \end{array} \right\} = v^*_{\text{SDP}}$$

= holds
$$\iff \text{SDP relaxation is exact}$$

Interested in

What conditions of QCQPs guarantee the exact SDP relaxation? $(v^* = v^*_{\rm SDP}) \label{eq:VP}$

 \implies classify QCQPs as tractable or not.

$$v^* \ge \min \left\{ \begin{array}{c|c} Q^0 \bullet X & X \succeq O \\ Q^p \bullet X \le b_p & \forall p \in [m] \end{array} \right\} = v^*_{\text{SDP}}$$

$$= \text{holds} \qquad \qquad \text{an optimal solution } X^* \\ \iff \text{ SDP relaxation is exact} \qquad \iff \begin{array}{c} \text{ of rank-1 exists} \end{array}$$

Interested in

What conditions of QCQPs guarantee the exact SDP relaxation? $(v^* = v^*_{\rm SDP}) \label{eq:VP}$

 \implies classify QCQPs as tractable or not.

- Motivation
- Sparsity structures of QCQPs
- Exactness condition for bipartite sparsity structures
- Example
- Sign-definite QCQPs
- Comparison with existing research
- Summary

Sparsity Pattern of QCQP

Aggregated Sparsity Pattern of QCQP: $G(\mathcal{V}, \mathcal{E})$

$$\mathcal{V} := [n],$$

$$\mathcal{E} := \left\{ (i,j) \in \mathcal{V}^2 \mid i \neq j, \ Q_{ij}^p \neq 0 \text{ for some } p \in \{0,\dots,m\} \right\}.$$

$$\underbrace{\text{ex.}}_{Q^0} = \begin{bmatrix} 0 & -2 & 0 & 2 \\ -2 & 0 & -1 & 0 \\ 0 & -1 & 5 & 1 \\ 2 & 0 & 1 & -4 \end{bmatrix}, \quad Q^1 = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & 4 & -1 & 0 \\ 0 & -1 & 6 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}.$$

Let $G(\mathcal{V},\mathcal{E})$ be a nonempty graph.

$$v_{\text{DSDP}}^* \coloneqq \max \left\{ -\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} \mid \boldsymbol{y} \ge 0, \, S(\boldsymbol{y}) \succeq O \right\}$$
 $(\mathcal{D}_{\mathrm{R}})$

where matrix function over \mathbb{R}^m :

$$S(\boldsymbol{y}) \coloneqq Q^0 + \sum_{p=1}^m y_p Q^p.$$

When a given QCQP has the sparsity pattern $G(\mathcal{V}, \mathcal{E})$,

$$\circ \ S(y)_{k\ell} = 0 \text{ if } (k,\ell) \notin \mathcal{E}.$$

 $\circ \implies S(y)$ follows the same sparsity \mathcal{E} .

Assumption

- (i) Both ($\mathcal{P}_R)$ and ($\mathcal{D}_R)$ have optimal solutions, and
- (ii) At least one of the following two conditions holds:
 - (a) the feasible region of ($\mathcal{P}_{\mathrm{R}})$ is bounded, or
 - (b) the set of optimal solutions for ($\mathcal{D}_{\rm R})$ is bounded.
- strong duality holds: (Kim and Kojima¹)

 $\exists (X^*, \boldsymbol{y}^*) \text{: solutions of } (\mathcal{P}_R) \text{ and } (\mathcal{D}_R) \text{ such that }$

$$X^*S(\boldsymbol{y}^*) = O.$$

¹ Sunyoung Kim and Masakazu Kojima. Strong duality of a conic optimization problem with a single hyperplane and two cone constraints. arXiv:2111.03251v2. 2021.

 $v^* = v^*_{\rm SDP}$

- \iff (\mathcal{P}_{R}) has an optimal X^* satisfying $\mathrm{rank}(X^*) \leq 1$
- $\iff (\mathcal{D}_{\rm R}) \text{ has an optimal } \boldsymbol{y}^* \text{ satisfying } \mathrm{rank}\{S(\boldsymbol{y}^*)\} \geq n-1$ (under the strong duality)

$$\leftarrow \operatorname{rank}\{S(\boldsymbol{y})\} \ge n-1 \quad \forall \boldsymbol{y} \ge \boldsymbol{0} \text{ satisfying } S(\boldsymbol{y}) \succeq O$$
$$\int S(\boldsymbol{y}) \succeq O, \ S(\boldsymbol{y}) \boldsymbol{1} > \boldsymbol{0},$$

$$\leftarrow \begin{cases} S(\boldsymbol{y}) \leq \boldsymbol{0}, \ S(\boldsymbol{y}) \neq \boldsymbol{0}, \\ S(\boldsymbol{y})_{ij} > 0 \ \forall (i,j) \in \mathcal{E} \quad \text{[Grone et al., 1992]} \end{cases}$$

Since $\boldsymbol{y} \geq 0, \ S(\boldsymbol{y}) \succeq O, \ S(\boldsymbol{y})_{ij} \leq 0$ has no solutions,

we conclude $S(\boldsymbol{y})_{ij} > 0 \ \forall (i,j) \in \mathcal{E}.$

 $v^* = v^*_{\rm SDP}$

- \iff (\mathcal{P}_{R}) has an optimal X^* satisfying $\mathrm{rank}(X^*) \leq 1$
- $\iff (\mathcal{D}_{\rm R}) \text{ has an optimal } \boldsymbol{y}^* \text{ satisfying } \mathrm{rank}\{S(\boldsymbol{y}^*)\} \geq n-1$ (under the strong duality)

$$\leftarrow \operatorname{rank}\{S(\boldsymbol{y})\} \ge n-1 \quad \forall \boldsymbol{y} \ge \boldsymbol{0} \text{ satisfying } S(\boldsymbol{y}) \succeq \boldsymbol{O}$$
$$\leftarrow \begin{cases} S(\boldsymbol{y}) \succeq \boldsymbol{O}, \ S(\boldsymbol{y}) \boldsymbol{1} > \boldsymbol{0}, \\ S(\boldsymbol{y})_{ij} > 0 \ \forall (i,j) \in \mathcal{E} \quad [\text{Grone et al., 1992}] \end{cases}$$

Since $\boldsymbol{y} \geq 0, \ S(\boldsymbol{y}) \succeq O, \ S(\boldsymbol{y})_{ij} \leq 0$ has no solutions,

we conclude $S(\boldsymbol{y})_{ij} > 0 \ \forall (i,j) \in \mathcal{E}.$

 $v^* = v^*_{\rm SDP}$

- \iff (\mathcal{P}_{R}) has an optimal X^* satisfying $\mathrm{rank}(X^*) \leq 1$
- $\iff (\mathcal{D}_{\rm R}) \text{ has an optimal } \boldsymbol{y}^* \text{ satisfying } \mathrm{rank}\{S(\boldsymbol{y}^*)\} \geq n-1$ (under the strong duality)

$$\leftarrow \operatorname{rank}\{S(\boldsymbol{y})\} \ge n-1 \quad \forall \boldsymbol{y} \ge \boldsymbol{0} \text{ satisfying } S(\boldsymbol{y}) \succeq O$$
$$\int S(\boldsymbol{y}) \succeq O, \quad S(\boldsymbol{y}) \ge \boldsymbol{0}.$$

$$\leftarrow \left\{ \begin{array}{l} S(\boldsymbol{y}) \succeq O, \ S(\boldsymbol{y}) \mathbf{1} > \mathbf{0}, \\ S(\boldsymbol{y})_{ij} > 0 \ \forall (i,j) \in \mathcal{E} \quad \text{[Grone et al., 1992]} \end{array} \right.$$

Since $\boldsymbol{y} \geq 0, \ S(\boldsymbol{y}) \succeq O, \ S(\boldsymbol{y})_{ij} \leq 0$ has no solutions,

we conclude $S(\boldsymbol{y})_{ij} > 0 \ \forall (i,j) \in \mathcal{E}.$

Suppose G is a bipartite.

Exactness Condition for QCQPs with Bipartite Structures

For all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$\boldsymbol{y} \ge 0, \ S(\boldsymbol{y}) \succeq O, \ [S(\boldsymbol{y})]_{k\ell} \le 0,$$
 (

- Checking $|\mathcal{E}|$ feasibility systems is required.
- (1) is a SDP, i.e., tractable.

Example 2

$$\begin{array}{l} \min \quad \boldsymbol{x}^{\mathrm{T}} Q^{0} \boldsymbol{x} \\ \text{s.t.} \quad \boldsymbol{x}^{\mathrm{T}} Q^{1} \boldsymbol{x} \leq 10, \quad \boldsymbol{x}^{\mathrm{T}} Q^{2} \boldsymbol{x} \leq 10, \quad \boldsymbol{x}^{\mathrm{T}} Q^{3} \boldsymbol{x} \leq 5 \end{array} \\ \text{where} \\ Q^{0} = \begin{bmatrix} 0 & -2 & 0 & 2 \\ -2 & 0 & -1 & 0 \\ 0 & -1 & 5 & 1 \\ 2 & 0 & 1 & -4 \end{bmatrix}, \quad Q^{1} = \begin{bmatrix} 5 & 2 & 0 & 1 \\ 2 & -1 & 3 & 0 \\ 0 & 3 & 3 & -1 \\ 1 & 0 & -1 & 4 \end{bmatrix} \\ Q^{2} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & 4 & -1 & 0 \\ 0 & -1 & 6 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}, \quad Q^{3} = \begin{bmatrix} 4 & -1 & 0 & 0 \\ -1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 4 \\ 0 & 0 & 4 & 2 \end{bmatrix}$$

11

Sparsity of Example 2

$$Q^{0} = \begin{bmatrix} 0 & -2 & 0 & 2 \\ -2 & 0 & -1 & 0 \\ 0 & -1 & 5 & 1 \\ 2 & 0 & 1 & -4 \end{bmatrix}, \ Q^{1} = \begin{bmatrix} 5 & 2 & 0 & 1 \\ 2 & -1 & 3 & 0 \\ 0 & 3 & 3 & -1 \\ 1 & 0 & -1 & 4 \end{bmatrix},$$
$$Q^{2} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & 4 & -1 & 0 \\ 0 & -1 & 6 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}, \ Q^{3} = \begin{bmatrix} 4 & -1 & 0 & 0 \\ -1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 4 \\ 0 & 0 & 4 & 2 \end{bmatrix}.$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 4$$

$$\mathcal{E} = \left\{ \begin{array}{c} (1,2), (2,1), (1,4), (4,1), \\ (2,3), (3,2), (3,4), (4,3) \end{array} \right\}.$$

Consider the problem for $(k, \ell) \in \mathcal{E}$:

$$\mu^* = \min \quad S(\boldsymbol{y})_{k\ell}$$

s.t. $\boldsymbol{y} \ge \boldsymbol{0}, \ S(\boldsymbol{y}) \succeq O.$

All positives \implies the following systems have no solutions:

$$\boldsymbol{y} \ge \boldsymbol{0}, \ S(\boldsymbol{y}) \succeq O, \ S(\boldsymbol{y})_{k\ell} \le 0.$$
 (1)

(2)

Comparison of Exactness Conditions

	Graph G	Systems to check	
Burer & Ye ²	no edges	$\mathcal{S}_{=}$ for all (k, ℓ) such that $k = \ell$	
Azuma et al. ³	forest	$\mathcal{S}_{=}$ for all $(k,\ell)\in\mathcal{E}$	
Proposed method	bipartite	\mathcal{S}_{\leq} for all $(k,\ell)\in\mathcal{E}$	
where systems are:			
find $\boldsymbol{y} \ge 0$ such that $S(\boldsymbol{y}) \succeq O, \ [S(\boldsymbol{y})]_{k\ell} \diamondsuit 0.$ (S_{\diamondsuit})			

²Samuel Burer and Yinyu Ye. "Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs". In: *Mathematical Programming* 181.1 (2020), pp. 1–17.

³Godai Azuma et al. "Exact SDP Relaxations of Quadratically Constrained Quadratic Programs with Forest Structures". In: Journal of Global Optimization 82.2 (2022), pp. 243–262.

Sign-definite QCQP

Definition of Sign-definite QCQP

- For all (i, j), the set $T_{ij} \coloneqq \{Q_{ij}^0, \dots, Q_{ij}^m\}$ is sign-definite
- QCQPs with no sparsity

all nonnegative or all nonpositive

Theorem 2⁴

[Sojoudi and Lavaei, 2014]

$$\prod_{(i,j)\in\mathcal{C}}\sigma_{ij}=(-1)^{|\mathcal{C}|}\quad\text{for all cycles }\mathcal{C}\text{ in }G$$

where

$$\sigma_{ij} = \begin{cases} +1 & (T_{ij} \text{ has all nonnegative}), \\ -1 & (T_{ij} \text{ has all nonpositive}). \end{cases}$$

(3

⁴ Somayeh Sojoudi and Javad Lavaei. "Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure". In: SIAM Journal on Optimization 24.4 (2014), pp. 1746–1778.

Proposition

If a given (\mathcal{P}) satisfies the condition (3), proposed condition can detect the exactness of its SDP relaxation.

Idea:

We develop conversion method of QCQPs such that

- The obtained QCQP has bipartite sparsity.
- The obtained QCQP satisfies proposed condition: $\forall (k, \ell) \in \mathcal{E}$, the system (1) has no solutions.

Summary

Summary

- QCQPs whose G is bipartite were analyzed.
- New sufficient condition of $v^* = v^*_{SDP}$ was proposed.
- It was compared with three existing results.

Future works

- Approximated problems of QCQPs with exact SDP relaxation
- Analysis of QCQPs transformed from general problems

More information is available at arXiv:2204.09509,

"Exact SDP relaxations for quadratic programs with bipartite graph structures."

Thank you for your attention!

Backup Slides

Cycle Basis

$$\mathcal{C} := \{\mathcal{C}_1, \dots, \mathcal{C}_\kappa\} : \text{ set of (simple) cycles}$$
$$A \triangle B : \text{ symmetric difference of } A \text{ and } B$$
$$A \triangle B := (A \setminus B) \cup (B \setminus A)$$

${\mathcal C}$ is called a cycle basis of G

 $\iff \begin{cases} \circ \text{ allows any cycle in } G \text{ to be expressed by } \triangle \text{ of its elements} \\ \circ \text{ be a minimum set} \end{cases}$

Instance for SDP relaxation (QCQP side)

Example 1⁵

$$v^* = \min x^2 + y^2$$

s.t. $y^2 \ge 1, x^2 - xy \ge 1, x^2 + xy \ge 1$

From last two inequality,

• $xy > 0 \implies xy > -xy$ $xy < 0 \implies -xy > xy$ • $x^2 \ge 1$. $\therefore x^2 + y^2 \ge (|x||y| + 1) + 1 \ge 3$

⁵Luo-Lecture14.

Instance for SDP relaxation (SDP side)

$$v^{*} = \min \left\{ x^{2} + y^{2} \mid y^{2} \ge 1, \ x^{2} - xy \ge 1, \ x^{2} + xy \ge 1 \right\}$$

$$= \min \left\{ x^{T} I x \mid x^{T} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} x \ge 1, \\ x^{T} \begin{bmatrix} 1 & -1/2 \\ -1/2 & 0 \end{bmatrix} x \ge 1, \ x^{T} \begin{bmatrix} 1 & 1/2 \\ 1/2 & 0 \end{bmatrix} x \ge 1 \right\}$$

$$\ge \min \left\{ I \bullet X \mid \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \bullet X \ge 1, \ X \ge 0, \\ \begin{bmatrix} 1 & -1/2 \\ -1/2 & 0 \end{bmatrix} \bullet X \ge 1, \\ \begin{bmatrix} 1 & 1/2 \\ 1/2 & 0 \end{bmatrix} \bullet X \ge 1 \right\}$$

$$= \min \left\{ X_{11} + X_{22} \mid X_{22} \ge 1, \ X_{11} - X_{12} \ge 1, \ X_{11} + X_{12} \ge 1, \ X \ge 0 \right\}$$

X = I is feasible $\implies v_{\text{SDP}}^* \le 2 < 3 \le v^*$

Used in various problems:

- MAX-CUT, MAX-CLIQUE
- sensor (facility) location problem, pooling problem
- optimal flow problem, polynomial optimization
- (robust / sparse) principal component analysis, phase retrieval

Theorem 3.7'

Suppose Assumption 3.8 holds & G is a forest and connected graph. Then, $v^* = v^*_{SDP}$ if for all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$y \ge 0, \ S(y) \succeq O, \ [S(y)]_{k\ell} = 0,$$
 (??)

Let $G([n], \mathcal{E}_M)$ be the sparsity pattern graph of a matrix M.

For tree (connected forest)	[Johnson et al., 2003, Corollary 3.9]
$G \text{ is connected and forest} \\ M \succeq O \\ M_{ij} \neq 0 \forall (i,j) \in \mathcal{E}_M \end{cases}$	$\Rightarrow \implies \operatorname{rank} M \ge n-1$
For bipartite	[Grone et al., 1992, Proposition 1]
G is connected and bipartite $M \succeq O, M1 > 0$	$ > \implies \operatorname{rank} M \ge n-1 $

where 1 is the one vector $[1 \cdots 1]^{T}$.

 $M_{ij} > 0 \quad \forall (i,j) \in \mathcal{E}_M$

Rank of Solutions of Dual SDP Relaxation

Assume the strong duality holds.

Lemma

[Burer and Ye, 2020]

 $(\mathcal{D}_{\mathrm{R}})$ has a solution of rank (n-1) or more $\implies v^* = v^*_{\mathrm{SDP}}$

Proof.

Let (X^*, y^*) be a solution satisfying $X^*S(y^*) = O$. From Sylvester's rank inequality,

 $\operatorname{rank}(X^*) \le n - \operatorname{rank}\{S(\boldsymbol{y}^*)\} + \operatorname{rank}\{X^*S(\boldsymbol{y}^*)\}$

Rank of Solutions of Dual SDP Relaxation

Assume the strong duality holds.

Lemma

[Burer and Ye, 2020]

 $(\mathcal{D}_{\mathrm{R}})$ has a solution of rank (n-1) or more $\implies v^* = v^*_{\mathrm{SDP}}$

Proof.

Let (X^*, y^*) be a solution satisfying $X^*S(y^*) = O$. From Sylvester's rank inequality,

$$\operatorname{rank}(X^*) \le n - \operatorname{rank}\{S(\boldsymbol{y}^*)\} + \operatorname{rank}\{X^*S(\boldsymbol{y}^*)\}$$
$$= n - \underbrace{\operatorname{rank}\{S(\boldsymbol{y}^*)\}}_{\ge n-1} \le 1. \quad \Box$$

Rank of Solutions of Dual SDP Relaxation

Assume the strong duality holds.

Lemma

 $(\mathcal{D}_{\mathrm{R}})$ has a solution of rank (n-1) or more $\implies v^* = v^*_{\mathrm{SDP}}$

Proof.

Let (X^*, y^*) be a solution satisfying $X^*S(y^*) = O$. From Sylvester's rank inequality,

$$\operatorname{rank}(X^*) \le n - \operatorname{rank}\{S(\boldsymbol{y}^*)\} + \operatorname{rank}\{X^*S(\boldsymbol{y}^*)\}$$
$$= n - \underbrace{\operatorname{rank}\{S(\boldsymbol{y}^*)\}}_{\ge n-1} \le 1. \quad \Box$$

Exactness can be considered from the dual side.

Non-homogeneous version of QCQP:

$$\begin{aligned} v^* &\coloneqq \min_{\boldsymbol{x} \in \mathbb{R}^n} \quad \boldsymbol{x}^{\mathrm{T}} Q^0 \boldsymbol{x} + 2(\boldsymbol{q}^0)^{\mathrm{T}} \boldsymbol{x} \\ &\text{s.t.} \quad \boldsymbol{x}^{\mathrm{T}} Q^p \boldsymbol{x} + 2 \boldsymbol{q}^{p \mathrm{T}} \boldsymbol{x} \leq b_p, \quad p \in [m], \end{aligned}$$

Define
$$S(y) = Q^0 + \sum y_p Q^p$$
, $s(y) = q_0 + \sum y_p q_p$.

Exactness Condition for Diagonal QCQPs

[Burer and Ye, 2020]

Suppose Q^0, Q^1, \ldots, Q^m are diagonal matrices. If for all $k \in \{1, \ldots, n\}$, the following system is infeasible:

 $y \ge 0, \ S(y) \succeq 0, \ [S(y)]_{kk} = 0, \ [s(y)]_k = 0.$

the SDP relaxation is exact.

•

$$\therefore \quad S(\boldsymbol{y})_{ij} = Q_{ij}^0 + y_1 Q_{ij}^1 + \dots + y_m Q_{ij}^m$$

 $\implies S(y)$ has the same sparsity structure as that of QCQP.

ex.

$$S(\mathbf{y}) = \begin{bmatrix} -y_1 & -2 + y_1 & \mathbf{0} & 2 \\ -2 + y_1 & +4y_1 & -1 - y_1 & \mathbf{0} \\ \mathbf{0} & -1 - y_1 & 5 + 6y_1 & 1 + y_1 \\ 2 & \mathbf{0} & 1 + y_1 & -4 - 2y_1 \end{bmatrix}$$

$$\underline{\mathsf{Ex.}} \qquad n = 2, \quad m = 1, \\ \min \cdot \mathbf{x}^{\mathrm{T}} \begin{bmatrix} -3 & -1 \\ -1 & -2 \end{bmatrix} \mathbf{x} \qquad \text{s.t.} \quad \mathbf{x}^{\mathrm{T}} \begin{bmatrix} 3 & 4 \\ 4 & 6 \end{bmatrix} \mathbf{x} \le 1.$$

•
$$\mathcal{E} = \{(1,2), (2,1)\}$$

• Systems – only for
$$(k, \ell) = (1, 2)$$

$$y_1 \ge 0, \quad \begin{bmatrix} -3 & -1 \\ -1 & -2 \end{bmatrix} + y_1 \begin{bmatrix} 3 & 4 \\ 4 & 6 \end{bmatrix} \succeq O, \quad -1 + 4y_1 \le 0$$

•
$$S(y) \succeq O \iff y_1 \ge 3 + \frac{3\sqrt{6}}{2} \simeq 6.67$$

second inequality $\implies -1 + 4y_1 > 0 \implies v^* = v^*_{SDP}$
No solutions

ε -Perturbed QCQPs

Let
$$P \neq O \in \mathbb{S}^n$$
 and $\varepsilon > 0$
 $v^* = \min \{ \mathbf{x}^{\mathrm{T}} Q^0 \mathbf{x} \mid \mathbf{x}^{\mathrm{T}} Q^p \mathbf{x} \le b_p \quad \forall p \in [m] \}$ (P)
 \downarrow

$$v_{arepsilon}^{*} = \min\left\{ \left. oldsymbol{x}^{\mathrm{T}} \left(Q^{0} + oldsymbol{arepsilon} P
ight) oldsymbol{x} \mid oldsymbol{x}^{\mathrm{T}} Q^{p} oldsymbol{x} \leq b_{p} \quad orall p \in [m]
ight.
ight\} \quad (\mathcal{P}^{arepsilon})$$

- $(\mathcal{P}^{\varepsilon})$ converges to (\mathcal{P}) as $\varepsilon \downarrow 0$.
- If $P \preceq O$, then $v_{\varepsilon}^* \leq v^*$.

ε -Perturbed QCQPs

Let
$$P \neq O \in \mathbb{S}^n$$
 and $\varepsilon > 0$
 $v^* = \min \{ |\mathbf{x}^T Q^0 \mathbf{x} | | \mathbf{x}^T Q^p \mathbf{x} \le b_p \quad \forall p \in [m] \} \qquad (\mathcal{P})$
 \downarrow
 $v_{\varepsilon}^* = \min \{ |\mathbf{x}^T (Q^0 + \varepsilon \mathbf{P}) | \mathbf{x} | | | \mathbf{x}^T Q^p \mathbf{x} \le b_p \quad \forall p \in [m] \} \qquad (\mathcal{P}^{\varepsilon})$
Preferred edges can be added to G

- $(\mathcal{P}^{\varepsilon})$ converges to (\mathcal{P}) as $\varepsilon \downarrow 0$.
- If $P \preceq O$, then $v_{\varepsilon}^* \leq v^*$.

Instance of Adding Edges

$$\min \left\{ \left. oldsymbol{x}^{\mathrm{T}} \left(Q^{0} \hspace{1cm}
ight) oldsymbol{x} \; \middle| \; oldsymbol{x}^{\mathrm{T}} Q^{1} oldsymbol{x} \leq 10 \;
ight\}$$

$$Q^{0} = \begin{bmatrix} 0 & -2 & 0 & 0 \\ -2 & 0 & -1 & 0 \\ 0 & -1 & 5 & 0 \\ 0 & 0 & 0 & -4 \end{bmatrix}, \quad Q^{1} = \begin{bmatrix} 5 & 2 & 0 & 0 \\ 2 & -1 & 3 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix},$$

Instance of Adding Edges

$$\begin{array}{c} \min\left\{ \left. \boldsymbol{x}^{\mathrm{T}} \left(Q^{0} + \boldsymbol{\varepsilon} \boldsymbol{P} \right) \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{1} \boldsymbol{x} \leq 10 \right. \right\} \\ Q^{0} = \begin{bmatrix} 0 & -2 & 0 & 0 \\ -2 & 0 & -1 & 0 \\ 0 & -1 & 5 & 0 \\ 0 & 0 & 0 & -4 \end{bmatrix}, \quad Q^{1} = \begin{bmatrix} 5 & 2 & 0 & 0 \\ 2 & -1 & 3 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}, \quad \boldsymbol{P} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$\{\varepsilon_t\}_{t=1}^{\infty} \subseteq \mathbb{R}_+ :$ monotonically decreasing and $\lim_{t \to \infty} \varepsilon_t = 0$

 $P \neq O: n \times n$ negative semidefinite matrix

Lemma 4.1, Lemma 4.4, and Lemma 4.5

Suppose Assumption 3.6 holds, or

Assumption 3.8 and an additional one hold.

SDP relaxation of $(\mathcal{P}^{\varepsilon})$ is exact

for all $\varepsilon = \varepsilon_1, \varepsilon_2, \ldots$

$$\Rightarrow v^* = v^*_{\text{SDP}}.$$

Let $G(\mathcal{V}, \mathcal{E})$ be the aggregated sparsity pattern graph of (\mathcal{P}).

Theorem 4.2

Suppose Assumption 3.6 holds & G is a forest and connected. Then, $v^* = v^*_{\text{SDP}}$ if, for all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$y \ge 0, \ S(y) \succeq O, \ [S(y)]_{k\ell} = 0,$$
 (??)

Theorem 4.6

Suppose Assumption 4.3 holds & G is a bipartite and connected. Then, $v^* = v^*_{\text{SDP}}$ if, for all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$\boldsymbol{y} \ge 0, \ S(\boldsymbol{y}) \succeq O, \ [S(\boldsymbol{y})]_{k\ell} \le 0,$$
 (1)

Let $G(\mathcal{V}, \mathcal{E})$ be the aggregated sparsity pattern graph of (\mathcal{P}).

Theorem 4.2

Suppose Assumption 3.6 holds & G is a forest. Then, $v^* = v^*_{\text{SDP}}$ if, for all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$\boldsymbol{y} \ge 0, \ S(\boldsymbol{y}) \succeq O, \ [S(\boldsymbol{y})]_{k\ell} = 0,$$
 (??)

Theorem 4.6

Suppose Assumption 4.3 holds & G is a bipartite.

Then, $v^* = v^*_{\rm SDP}$ if, for all $(k,\ell) \in \mathcal{E},$ the following system has no solutions:

$$\boldsymbol{y} \ge 0, \ S(\boldsymbol{y}) \succeq O, \ [S(\boldsymbol{y})]_{k\ell} \le 0,$$
 (1)

Proof of Theorem 4.6.

- 1. Let \mathcal{F} be the set of additional edges.
- **2.** Define $P \preceq O$ as

$$P_{ij} = \begin{cases} -\deg(i) & \text{ if } i = j, \\ 1 & \text{ if } (i,j) \in \mathcal{F} \text{ or } (j,i) \in \mathcal{F}, \\ 0 & \text{ otherwise,} \end{cases}$$

3. ($\mathcal{P}^{\varepsilon}$) satisfies assumptions of Theorem 3.10.

 \implies SDP relaxation of ($\mathcal{P}^{\varepsilon}$) is exact.

4. Using Lemma 4.4 (4.5), we conclude $v^* = v^*_{\text{SDP}}$.

- Trust-region subproblems (TRS: QCQP with one constraint) Yakubovich[1971]
- Extended TRS (TRS + linear constraints) Jeyakumar[2014], Hsia and Sheu[2013], Locatelli[2016]
- QCQPs with sign-definiteness Kim and Kojima[2003], Sojoudi and Lavaei[2014]
- Exactness by faces of convex lagrangian multipliers Wang and Kılınç-Karzan[2021]
- Rank-one generated cones Argue, Kılınç-Karzan and Wang[2020]

Transform from general QCQPs to sparse QCQPs.

1. Objective function and constraints have the form:

$$\boldsymbol{x}^{\mathrm{T}} \begin{bmatrix} Q_{11}^{p} & Q_{12}^{p} & Q_{13}^{p} & Q_{14}^{p} \\ Q_{21}^{p} & Q_{22}^{p} & Q_{23}^{p} & Q_{24}^{p} \\ Q_{31}^{p} & Q_{32}^{p} & Q_{33}^{p} & Q_{34}^{p} \\ Q_{41}^{p} & Q_{42}^{p} & Q_{43}^{p} & Q_{44}^{p} \end{bmatrix} \boldsymbol{x}, \quad \forall p,$$

where n = 4, Q^p : symmetric matrices.

2. Assume remove edges (1,3) and (2,4) because of $Q_{13}^p < 0$, $Q_{24}^p < 0$.

Essence of Proof (2)

- 3. New variable $z \coloneqq -x$ is introduced.
- 4. It can be written as

5. Off-diagonal elements are all nonnegative with some zero elements.

The obtained problem satisfies Theorem 4.6.