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QCQP: Quadratic Constrained Quadratic Programming

Let Q0, . . . , Qm be n× n symmetric matrices, b ∈ Rm.

v∗ := min
x∈Rn

xTQ0x

s.t. xTQpx ≤ bp, p ∈ [m] := {1, . . . ,m},
(P )

Applications
MAX‐CUT, sensor location problems, optimal flow problems,...

• (P ) is a homogeneous form (no linear terms).

• Calculation of v∗ is NP‐hard.
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Semidefinite Programming (SDP) Relaxation

A •B : Frobenius (component‐wise) inner product of A and B

X ⪰ O : Positive semidefinite

v∗ = min
{
xTQ0x

∣∣xTQpx ≤ bp ∀p ∈ [m]
}

= min

{
Q0 •X

∣∣∣∣∣ X = xxT

Qp •X ≤ bp ∀p ∈ [m]

}

≥ min

{
Q0 •X

∣∣∣∣∣ X ⪰ xxT

Qp •X ≤ bp ∀p ∈ [m]

}
(PR)

=: v∗SDP

v∗SDP can be caluculated in polynomial time.
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Exactness of SDP Relaxation

v∗ ≥ min

{
Q0 •X

∣∣∣∣∣ X ⪰ O

Qp •X ≤ bp ∀p ∈ [m]

}
= v∗SDP

= holds
⇐⇒ SDP relaxation is exact

⇐⇒
an optimal solution X∗

of rank‐1 exists

Interested in

What conditions of QCQPs guarantee the exact SDP relaxation?
(v∗ = v∗SDP)

=⇒ classify QCQPs as tractable or not.
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Sparsity Pattern of QCQP

Aggregated Sparsity Pattern of QCQP: G(V, E)

V := [n],

E :=
{
(i, j) ∈ V2

∣∣∣ i ̸= j, Qp
ij ̸= 0 for some p ∈ {0, . . . ,m}

}
.

ex. min
{
xTQ0x

∣∣ xTQ1x ≤ 10
}

Q0 =


0 −2 0 2

−2 0 −1 0

0 −1 5 1

2 0 1 −4

 , Q1 =


−1 1 0 0

1 4 −1 0

0 −1 6 1

0 0 1 −2

 .

1 2

43
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Forest and Bipartite Graph

Let G(V, E) be a nonempty graph.

Cycle
G Odd length Even length #Components
Tree 1

Forest ≥ 1

Bipartite ✓ ≥ 1

1 2

43

Tree

1 2

43

Forest

1 2

43

Bipartite
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Dual of SDP Relaxation

v∗DSDP := max
{
−bTy

∣∣ y ≥ 0, S(y) ⪰ O
}

(DR)

where matrix function over Rm:

S(y) := Q0 +

m∑
p=1

ypQ
p.

When a given QCQP has the sparsity pattern G(V, E),

◦ S(y)kℓ = 0 if (k, ℓ) ̸∈ E .

◦ =⇒ S(y) follows the same sparsity E .
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Assumption in This Talk

Assumption

(i) Both (PR) and (DR) have optimal solutions, and

(ii) At least one of the following two conditions holds:

(a) the feasible region of (PR) is bounded, or

(b) the set of optimal solutions for (DR) is bounded.

• strong duality holds: (Kim and Kojima1)

∃(X∗,y∗): solutions of (PR) and (DR) such that

X∗S(y∗) = O.

1Sunyoung Kim and Masakazu Kojima. Strong duality of a conic optimization problem with a single hyperplane and two cone
constraints. arXiv:2111.03251v2. 2021.
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Sufficient Conditions for Exactness

v∗ = v∗SDP

⇐⇒ (PR) has an optimal X∗ satisfying rank(X∗) ≤ 1

⇐= (DR) has an optimal y∗ satisfying rank{S(y∗)} ≥ n− 1

(under the strong duality)

⇐= rank{S(y)} ≥ n− 1 ∀y ≥ 0 satisfying S(y) ⪰ O

Since y ≥ 0, S(y) ⪰ O, S(y)ij ≤ 0 has no solutions,

we conclude S(y)ij > 0 ∀(i, j) ∈ E .

⇐=

{
S(y) ⪰ O, S(y)1 > 0,

S(y)ij > 0 ∀(i, j) ∈ E [Grone et al., 1992]
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New Exactness Condition

Suppose G is a bipartite.

Exactness Condition for QCQPs with Bipartite Structures
For all (k, ℓ) ∈ E , the following system has no solutions:

y ≥ 0, S(y) ⪰ O, [S(y)]kℓ ≤ 0, (1)

• Checking |E| feasibility systems is required.

• (1) is a SDP, i.e., tractable.
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Example 2

min xTQ0x

s.t. xTQ1x ≤ 10, xTQ2x ≤ 10, xTQ3x ≤ 5

where

Q0 =


0 −2 0 2

−2 0 −1 0

0 −1 5 1

2 0 1 −4

 , Q1 =


5 2 0 1

2 −1 3 0

0 3 3 −1

1 0 −1 4

 ,

Q2 =


−1 1 0 0

1 4 −1 0

0 −1 6 1

0 0 1 −2

 , Q3 =


4 −1 0 0

−1 −2 1 0

0 1 −2 4

0 0 4 2

 .
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Sparsity of Example 2

Q0 =


0 −2 0 2

−2 0 −1 0

0 −1 5 1

2 0 1 −4

 , Q1 =


5 2 0 1

2 −1 3 0

0 3 3 −1

1 0 −1 4

 ,

Q2 =


−1 1 0 0

1 4 −1 0

0 −1 6 1

0 0 1 −2

 , Q3 =


4 −1 0 0

−1 −2 1 0

0 1 −2 4

0 0 4 2

 .

1

3

2

4

E =

{
(1, 2), (2, 1), (1, 4), (4, 1),

(2, 3), (3, 2), (3, 4), (4, 3)

}
.

12



Systems of Example 2

Consider the problem for (k, ℓ) ∈ E :

µ∗ = min S(y)kℓ

s.t. y ≥ 0, S(y) ⪰ O.
(2)

(k, ℓ) (1, 2) (2, 3) (1, 4) (3, 4)

µ∗ 18.58 12.84 8.897 0.3215

All positives =⇒ the following systems have no solutions:

y ≥ 0, S(y) ⪰ O, S(y)kℓ ≤ 0. (1)
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Comparison of Exactness Conditions

Graph G Systems to check

Burer & Ye2 no edges S= for all (k, ℓ) such that k = ℓ

Azuma et al.3 forest S= for all (k, ℓ) ∈ E

Proposed method bipartite S≤ for all (k, ℓ) ∈ E

where systems are:

find y ≥ 0 such that S(y) ⪰ O, [S(y)]kℓ♢ 0. (S♢)

a LP or a SDP: tractable problem

2Samuel Burer and Yinyu Ye. “Exact semidefinite formulations for a class of (random and non‐random) nonconvex quadratic
programs”. In: Mathematical Programming 181.1 (2020), pp. 1–17.
3Godai Azuma et al. “Exact SDP Relaxations of Quadratically Constrained Quadratic Programs with Forest Structures”. In:
Journal of Global Optimization 82.2 (2022), pp. 243–262.
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Sign‐definite QCQP

Definition of Sign‐definite QCQP

• For all (i, j), the set Tij := {Q0
ij , . . . , Q

m
ij } is sign‐definite

• QCQPs with no sparsity

Theorem 24 [Sojoudi and Lavaei, 2014]∏
(i,j)∈C

σij = (−1)|C| for all cycles C in G (3)

where

σij =

 +1 (Tij has all nonnegative),

−1 (Tij has all nonpositive).

all nonnegative or all nonpositive

4Somayeh Sojoudi and Javad Lavaei. “Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with
Underlying Graph Structure”. In: SIAM Journal on Optimization 24.4 (2014), pp. 1746–1778.
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Proposed Condition Covers Condition (3)

Proposition
If a given (P ) satisfies the condition (3),
proposed condition can detect the exactness of its SDP relaxation.

Idea:
We develop conversion method of QCQPs such that

• The obtained QCQP has bipartite sparsity.

• The obtained QCQP satisfies proposed condition:
∀(k, ℓ) ∈ E , the system (1) has no solutions.
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Summary

Summary

• QCQPs whose G is bipartite were analyzed.
• New sufficient condition of v∗ = v∗SDP was proposed.
• It was compared with three existing results.

Future works

• Approximated problems of QCQPs with exact SDP relaxation
• Analysis of QCQPs transformed from general problems

More information is available at arXiv:2204.09509,
“Exact SDP relaxations for quadratic programs with bipartite graph structures.”

Thank you for your attention!
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Cycle Basis

C := {C1, . . . , Cκ} : set of (simple) cycles

A△B : symmetric difference of A and B

A△B := (A \B) ∪ (B \A)

C is called a cycle basis of G

⇐⇒

 ◦ allows any cycle in G to be expressed by△ of its elements

◦ be a minimum set

Ex.
1 2

43

any two
=⇒

1 2

43

1 2

43

1 2

43
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Instance for SDP relaxation (QCQP side)

Example 15

v∗ = min x2 + y2

s.t. y2 ≥ 1, x2 − xy ≥ 1, x2 + xy ≥ 1

From last two inequality,

•
xy > 0 =⇒ xy > −xy

xy < 0 =⇒ −xy > xy

}
=⇒ x2 ≥ |x||y| + 1

• x2 ≥ 1.

∴ x2 + y2 ≥ (|x||y|+ 1) + 1 ≥ 3

5Luo‐Lecture14.
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Instance for SDP relaxation (SDP side)

v∗ = min
{
x2 + y2

∣∣ y2 ≥ 1, x2 − xy ≥ 1, x2 + xy ≥ 1
}

= min

xTIx

∣∣∣∣∣∣∣∣∣∣
xT

[
0 0

0 1

]
x ≥ 1,

xT

[
1 −1/2

−1/2 0

]
x ≥ 1, xT

[
1 1/2

1/2 0

]
x ≥ 1


≥ min

I •X

∣∣∣∣∣∣∣∣∣∣

[
0 0

0 1

]
•X ≥ 1, X ⪰ O[

1 −1/2

−1/2 0

]
•X ≥ 1,

[
1 1/2

1/2 0

]
•X ≥ 1


= min {X11 +X22 |X22 ≥ 1, X11 −X12 ≥ 1, X11 +X12 ≥ 1, X ⪰ O}

X = I is feasible =⇒ v∗SDP ≤ 2 < 3 ≤ v∗
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QCQP’s Applications

Used in various problems:

• MAX‐CUT, MAX‐CLIQUE

• sensor (facility) location problem, pooling problem

• optimal flow problem, polynomial optimization

• (robust / sparse) principal component analysis, phase retrieval
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Alternative Result for Theorem 3.7

Theorem 3.7’
Suppose Assumption 3.8 holds & G is a forest and connected graph.
Then, v∗ = v∗SDP if for all (k, ℓ) ∈ E , the following system has no
solutions:

y ≥ 0, S(y) ⪰ O, [S(y)]kℓ = 0, (??)
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Estimation of Rank of Sparse Matrices

Let G([n], EM ) be the sparsity pattern graph of a matrixM .

For tree (connected forest) [Johnson et al., 2003, Corollary 3.9]

G is connected and forest
M ⪰ O

Mij ̸= 0 ∀(i, j) ∈ EM

 =⇒ rankM ≥ n− 1

For bipartite [Grone et al., 1992, Proposition 1]

G is connected and bipartite
M ⪰ O, M1 > 0

Mij > 0 ∀(i, j) ∈ EM

 =⇒ rankM ≥ n− 1

where 1 is the one vector [1 · · · 1]T.
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Rank of Solutions of Dual SDP Relaxation

Assume the strong duality holds.

Lemma [Burer and Ye, 2020]

(DR) has a solution of rank (n− 1) or more =⇒ v∗ = v∗SDP

Proof.

Let (X∗,y∗) be a solution satisfying X∗S(y∗) = O.
From Sylvester’s rank inequality,

rank(X∗) ≤ n− rank{S(y∗)}+ rank{X∗S(y∗)}

= n− rank{S(y∗)}︸ ︷︷ ︸
≥n−1

≤ 1.

Exactness can be considered from the dual side.
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Exactness Condition on Existing Research

Non‐homogeneous version of QCQP:

v∗ := min
x∈Rn

xTQ0x+ 2(q0)
T
x

s.t. xTQpx+ 2qpTx ≤ bp, p ∈ [m],

Define S(y) = Q0 +
∑

ypQ
p, s(y) = q0 +

∑
ypqp.

Exactness Condition for Diagonal QCQPs [Burer and Ye, 2020]

Suppose Q0, Q1, . . . , Qm are diagonal matrices.
If for all k ∈ {1, . . . , n}, the following system is infeasible:

y ≥ 0, S(y) ⪰ 0, [S(y)]kk = 0, [s(y)]k = 0.

the SDP relaxation is exact.
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Relationship between S(y) and G

Observation

S(y)ij = 0 ∀y ∈ Rm ∀(i, j) ̸∈ E

(i, j) element

∵ S(y)ij = Q0
ij + y1Q

1
ij + · · ·+ ymQm

ij

1 2

43

=⇒ S(y) has the same sparsity structure as that of QCQP.

ex.

S(y) =


−y1 −2 + y1 0 2

−2 + y1 +4y1 −1− y1 0

0 −1− y1 5 + 6y1 1 + y1

2 0 1 + y1 −4− 2y1
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Ex. n = 2, m = 1,

min . xT

[
−3 −1

−1 −2

]
x s.t. xT

[
3 4

4 6

]
x ≤ 1.

• E = {(1, 2), (2, 1)}

• Systems — only for (k, ℓ) = (1, 2)

y1 ≥ 0,

[
−3 −1

−1 −2

]
+ y1

[
3 4

4 6

]
⪰ O, −1 + 4y1 ≤ 0

• S(y) ⪰ O ⇐⇒ y1 ≥ 3 + 3
√
6

2 ≃ 6.67

=⇒ −1 + 4y1 > 0 =⇒ v∗ = v∗SDPsecond inequality

No solutions
27



ε‐Perturbed QCQPs

Let P ̸= O ∈ Sn and ε > 0

v∗ = min
{
xTQ0x

∣∣ xTQpx ≤ bp ∀p ∈ [m]
}

(P )

↓

v∗ε = min
{
xT

(
Q0 + εP

)
x
∣∣ xTQpx ≤ bp ∀p ∈ [m]

}
(Pε)

• (Pε) converges to (P ) as ε ↓ 0.

• If P ⪯ O, then v∗ε ≤ v∗.
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ε‐Perturbed QCQPs

Let P ̸= O ∈ Sn and ε > 0

v∗ = min
{
xTQ0x

∣∣ xTQpx ≤ bp ∀p ∈ [m]
}
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↓

v∗ε = min
{
xT

(
Q0 + εP

)
x
∣∣ xTQpx ≤ bp ∀p ∈ [m]

}
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Preferred edges can be added to G

• (Pε) converges to (P ) as ε ↓ 0.

• If P ⪯ O, then v∗ε ≤ v∗.
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Instance of Adding Edges

min
{
xT

(
Q0

+ εP

)
x
∣∣ xTQ1x ≤ 10

}

Q0 =


0 −2 0 0

−2 0 −1 0

0 −1 5 0

0 0 0 −4

 , Q1 =


5 2 0 0

2 −1 3 0

0 3 3 0

0 0 0 4

 ,

P =


0 0 0 1

0 0 0 0

0 0 0 1

1 0 1 0

 .

1 2

43

29



Instance of Adding Edges

min
{
xT

(
Q0 + εP

)
x
∣∣ xTQ1x ≤ 10

}

Q0 =


0 −2 0 0

−2 0 −1 0

0 −1 5 0

0 0 0 −4

 , Q1 =


5 2 0 0

2 −1 3 0

0 3 3 0

0 0 0 4

 , P =


0 0 0 1

0 0 0 0

0 0 0 1

1 0 1 0

 .

1 2

43

29



Perturbation and Exactness

{εt}∞t=1 ⊆ R+ : monotonically decreasing and lim
t→∞

εt = 0

P ̸= O : n× n negative semidefinite matrix

Lemma 4.1, Lemma 4.4, and Lemma 4.5
Suppose Assumption 3.6 holds, or
Assumption 3.8 and an additional one hold.

SDP relaxation of (Pε) is exact
for all ε = ε1, ε2, . . .

=⇒ v∗ = v∗SDP.
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Result for Disconnected Sparsity Structures

Let G(V, E) be the aggregated sparsity pattern graph of (P ).

Theorem 4.2
Suppose Assumption 3.6 holds & G is a forest and connected.
Then, v∗ = v∗SDP if, for all (k, ℓ) ∈ E , the following system has no
solutions:

y ≥ 0, S(y) ⪰ O, [S(y)]kℓ = 0, (??)

Theorem 4.6
Suppose Assumption 4.3 holds & G is a bipartite and connected.
Then, v∗ = v∗SDP if, for all (k, ℓ) ∈ E , the following system has no
solutions:

y ≥ 0, S(y) ⪰ O, [S(y)]kℓ ≤ 0, (1)
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Sketch of Proof

Proof of Theorem 4.6.

1. Let F be the set of additional edges.

2. Define P ⪯ O as

Pij =


− deg(i) if i = j,

1 if (i, j) ∈ F or (j, i) ∈ F ,

0 otherwise,

3. (Pε) satisfies assumptions of Theorem 3.10.
=⇒ SDP relaxation of (Pε) is exact.

4. Using Lemma 4.4 (4.5), we conclude v∗ = v∗SDP.
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Previous Works

• Trust‐region subproblems (TRS: QCQP with one constraint)
Yakubovich[1971]

• Extended TRS (TRS + linear constraints)
Jeyakumar[2014], Hsia and Sheu[2013], Locatelli[2016]

• QCQPs with sign‐definiteness
Kim and Kojima[2003], Sojoudi and Lavaei[2014]

• Exactness by faces of convex lagrangian multipliers
Wang and Kılınç‐Karzan[2021]

• Rank‐one generated cones
Argue, Kılınç‐Karzan and Wang[2020]
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Essence of Proof (1)

Transform from general QCQPs to sparse QCQPs.

1. Objective function and constraints have the form:

xT


Qp

11 Qp
12 Qp

13 Qp
14

Qp
21 Qp

22 Qp
23 Qp

24

Qp
31 Qp

32 Qp
33 Qp

34

Qp
41 Qp

42 Qp
43 Qp

44

x, ∀p,

where n = 4, Qp: symmetric matrices.

2. Assume remove edges (1, 3) and (2, 4)
because of Qp

13 < 0, Qp
24 < 0.
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Essence of Proof (2)

3. New variable z := −x is introduced.

4. It can be written as

[
x

z

]T



Qp
11 Qp

12 0 Qp
14

Qp
21 Qp

22 Qp
23 0

0 Qp
32 Qp

33 Qp
34

Qp
41 0 Qp

43 Qp
44

0 0 − 1
2
Qp

13 0

0 0 0 0

− 1
2
Qp

31 0 0 0

0 0 0 0

0 0 − 1
2
Qp

13 0

0 0 0 0

− 1
2
Qp

31 0 0 0

0 0 0 0

O


[
x

z

]
, ∀p.

5. Off‐diagonal elements are all nonnegative
with some zero elements.

The obtained problem satisfies Theorem 4.6.
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