Tight Semidefinite Relaxations for Sign-indefinite QCQPs with Bipartite Structures

Godai Azuma ${ }^{1}$ Mituhiro Fukuda ${ }^{2}$
Sunyoung Kim ${ }^{3}$ Makoto Yamashita ${ }^{1}$
${ }^{1}$ Tokyo Institute of Technology $\quad{ }^{2}$ Federal University of $\mathrm{ABC} \quad{ }^{3}$ Ewha Womans University
SIAM OP23 (June 1st, 2023)
Supported by JSPS KAKENHI Grant Number JP22KJ1307

QCQP: Quadratically Constrained Quadratic Programming

Consider a quadratic programming with quadratic constraints:

$$
\begin{aligned}
v^{*}:=\min _{\boldsymbol{x} \in \mathbb{R}^{n}} & \boldsymbol{x}^{\mathrm{T}} Q^{0} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq b_{p}, \quad p \in[m]:=\{1, \ldots, m\},
\end{aligned}
$$

- Generally, non-convex \& NP-hard
- Semidefinite programming (SDP) relaxation

Applications

Binary programming, MAX-CUT, optimal flow problems,...

Semidefinite Programming (SDP) Relaxation

$$
\begin{aligned}
v^{*} & =\min \left\{\boldsymbol{x}^{\mathrm{T}} Q^{0} \boldsymbol{x}\right. \\
& \left.\boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq b_{p} \quad \forall p \in[m]\right\} \\
& =\min \left\{Q^{0} \bullet X \left\lvert\, \begin{array}{cc}
X=\boldsymbol{x} \boldsymbol{x}^{\mathrm{T}} & \\
Q^{p} \bullet X \leq b_{p} & \forall p \in[m]
\end{array}\right.\right\} \\
& \geq \min \left\{\begin{array}{l|c}
Q^{0} \bullet X & \begin{array}{c}
X \succeq \boldsymbol{x} \boldsymbol{x}^{\mathrm{T}} \\
Q^{p} \bullet X \leq b_{p}
\end{array} \quad \forall p \in[m]
\end{array}\right\}=: v_{\mathrm{SDP}}^{*} \quad\left(\mathcal{P}_{\mathrm{R}}\right)
\end{aligned}
$$

where

- $Q^{p} \bullet X:=\sum_{i, j} Q_{i j}^{p} X_{i j}$,
$\circ X \succeq O \quad \Longleftrightarrow \quad X$ is positive semidefinite.

Pros: calculatable in polynomial time.
Cons: $\quad v^{*} \neq v_{\mathrm{SDP}}^{*}$ in general

Tightness for SDP Relaxation

The following equality holds:

$$
v^{*}=\min \left\{\begin{array}{l|l}
Q^{0} \bullet X & \begin{array}{l}
X \succeq O \\
Q^{p} \bullet X \leq b_{p} \quad \forall p \in[m]
\end{array}
\end{array}\right\}=v_{\mathrm{SDP}}^{*}
$$

\Longleftrightarrow rank-1 solution X^{*} exists
Tight SDP relaxation \Longrightarrow

- Original QCQP is exactly solvable (in theorically)
- The gap between a class of QCQPs and their relaxations is identified.

Motivation

What conditions of QCQPs guarantee the tightness?

Assumption in This Talk

Assumption

(i) Both $\left(\mathcal{P}_{\mathrm{R}}\right)$ and $\left(\mathcal{D}_{R}\right)$ have optimal solutions, and
(ii) At least one of the following two conditions holds:
(a) the feasible region of $\left(\mathcal{P}_{\mathrm{R}}\right)$ is bounded, or
(b) the set of optimal solutions for $\left(\mathcal{D}_{R}\right)$ is bounded.

- strong duality holds: (Kim and Kojima ${ }^{1}$)

$$
\exists\left(X^{*}, \boldsymbol{y}^{*}\right) \text { : solutions of }\left(\mathcal{P}_{\mathrm{R}}\right) \text { and }\left(\mathcal{D}_{R}\right) \text { such that }
$$

$$
X^{*} S\left(\boldsymbol{y}^{*}\right)=O .
$$

[^0]
Outline

1. Introduction
2. Tightness for sign-definite QCQPs
3. Extension to sign-indefinite QCQPs

- Tightness \& solution's rank of dual SDP relaxation
- Upper bound for rank of matrices
- Tightness conditions under bipartite structure
- Adaptation for disconnected structures

4. Examples
5. Summary

Sign-definite QCQP

Definition

Sign-definite QCQP when
same index \Longrightarrow same sign (\geq or \leq) among Q^{0}, \ldots, Q^{m}

Ex.:

$$
\begin{gathered}
\min . \boldsymbol{x}^{\mathrm{T}} Q^{0} \boldsymbol{x}
\end{gathered} \text { s.t. } \boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq 10, p \in[3],\left[\begin{array}{cccc}
0 & -2 & 0 & 2 \\
-2 & 0 & -1 & 0 \\
Q^{0} & -1 & 5 & 1 \\
2 & 0 & 1 & -4
\end{array}\right], Q^{1}:=\left[\begin{array}{ccc}
5 & -2 & 0
\end{array} 1\right.
$$

QCQP's Sparsity

Aggregated Sparsity Pattern Graph $G(V, E)$
$=$ Nonzero pattern of variable matrices in dual problem

$$
V:=\{1, \ldots, n\}, \quad E:=\left\{(i, j) \mid i \neq j,\left[Q^{p}\right]_{i j} \neq 0 \text { for some } Q^{p}\right\} .
$$

Ex.:
$Q^{0}=\left[\begin{array}{cccc}0 & -2 & 0 & 2 \\ -2 & 0 & -1 & 0 \\ 0 & -1 & 5 & 1 \\ 2 & 0 & 1 & -4\end{array}\right], \quad Q^{1}=\left[\begin{array}{cccc}-1 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 6 & 1 \\ 0 & 0 & 1 & -2\end{array}\right]$.

Edge sign:

$$
\sigma_{i j}= \begin{cases}-1 & \text { if }(i, j) \text { th elements } \leq 0 \\ +1 & \text { if }(i, j) \text { th elements } \geq 0\end{cases}
$$

Ex. $\quad \sigma_{12}=\sigma_{23}=-1, \quad \sigma_{14}=\sigma_{34}=+1$.

Tightness of Sign-definite QCQP

Cycle-based conditions:

Theorem 2^{2}
Tight if the following equation holds

$$
\prod_{(i, j) \in \mathcal{C}} \sigma_{i j}=(-1)^{|\mathcal{C}|} \quad \text { for any cycles } \mathcal{C} \text { in } G
$$

i.e., even-length cycle \Longleftrightarrow the number of negative $\sigma_{i j}$ are even (odd)

Ex. $\quad \sigma_{i} j=-1, \quad \sigma_{i} j=+1$

[^1]
Problem and Our Objective

Problem:

- Only a few problems are sign-definite QCQPs.

Objective of our research

To expand the range of applicable problems by

- dropping the sign-definite condition
- employing the rank of dual SDP relaxation instead

Outline

1. Introduction

2. Tightness for sign-definite QCQPs

3. Extension to sign-indefinite QCQPs

- Tightness \& solution's rank of dual SDP relaxation
- Upper bound for rank of matrices
- Tightness conditions under bipartite structure
- Adaptation for disconnected structures

4. Examples
5. Summary

Primal/Dual Problems of SDP Relaxation

$$
\begin{equation*}
\min _{\boldsymbol{x} \in \mathbb{R}^{n}}\left\{\boldsymbol{x}^{\mathrm{T}} Q^{0} \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq b_{p}, p \in[m]\right\} \tag{P}
\end{equation*}
$$

Primal	
$\min _{X}$	$Q^{0} \bullet X$
s.t.	$Q^{p} \bullet X \leq b_{p}, p \in[m] \quad\left(\mathcal{P}_{R}\right)$
	$X \succeq O$

Dual

$$
\begin{align*}
\max _{\boldsymbol{y} \in \mathbb{R}^{\boldsymbol{m}}} & -\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} \\
\text { s.t. } & \boldsymbol{y} \geq \mathbf{0}, \tag{R}\\
& S(\boldsymbol{y}) \succeq O
\end{align*}
$$

Variable on dual side: ($\boldsymbol{y}, S(\boldsymbol{y})$) where

$$
S(\boldsymbol{y}):=Q^{0}+\sum_{p=1}^{m} y_{p} Q^{p} \quad \text { for } \boldsymbol{y} \in \mathbb{R}^{m} .
$$

Dual Solution of rank- $(n-1)$ is Important for Tightness

$$
\begin{array}{cl}
\min _{X} & Q^{0} \bullet X \\
\text { s.t. } & Q^{p} \bullet X \leq b_{p}, p \in[m] \quad\left(\mathcal{P}_{R}\right) \\
& X \succeq O
\end{array}
$$

Dual

$$
\begin{aligned}
\max _{\boldsymbol{y} \in \mathbb{R}^{m}} & -\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} \\
\text { s.t. } & \boldsymbol{y} \geq \mathbf{0}, \\
& S(\boldsymbol{y}) \succeq O
\end{aligned}
$$

Rank-1 solution X^{*}

Dual Solution of rank- $(n-1)$ is Important for Tightness

Primal

$$
\min _{X} Q^{0} \bullet X
$$

$$
\begin{equation*}
\text { s.t. } \quad Q^{p} \bullet X \leq b_{p}, p \in[m] \tag{R}
\end{equation*}
$$

$\left(\mathcal{P}_{R}\right)$ $X \succeq O$

Dual

$$
\begin{aligned}
\max _{\boldsymbol{y} \in \mathbb{R}^{m}} & -\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} \\
\text { s.t. } & \boldsymbol{y} \geq \mathbf{0} \\
& S(\boldsymbol{y}) \succeq O
\end{aligned}
$$

Rank-1 solution X^{*}
 Rank- $(n-1)$ solution $S\left(\boldsymbol{y}^{*}\right)$

under strong duality
Proof. There exists X^{*} satisfying $X^{*} S\left(y^{*}\right)=O$. From Sylvester's rank inequality,

$$
\begin{aligned}
\operatorname{rank}\left(X^{*}\right) & \leq n-\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\}+\operatorname{rank}\left\{X^{*} S\left(\boldsymbol{y}^{*}\right)\right\} \\
& =n-\underbrace{\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\}}_{\geq n-1} \quad \leq 1 .
\end{aligned}
$$

Recent Tightness Conditions

Based on dual SDP or its rank:

- Extended Trust-region subproblems

Jeyakumar[2014], Hsia and Sheu[2013], Locatelli[2016]

- Diagonal QCQPs Burer and Ye[2020]
- Tightness by faces of convex lagrangian multipliers Wang and Klınç-Karzan[2021]
- Rank-one generated cones

Argue, Kllınç-Karzan and Wang[2020]
\square

Sparsity Pattern of $S(\boldsymbol{y})$ under G

$S(\boldsymbol{y})$ has the same sparsity structure as that of QCQP.

Observation

$$
[S(\boldsymbol{y})]_{i j}=\left[Q^{0}\right]_{i j}+\sum_{p \in[m]} y_{p}\left[Q^{p}\right]_{i j}=0 \quad \forall \boldsymbol{y} \in \mathbb{R}^{m} \quad \forall(i, j) \notin E
$$

Ex.:

$$
\begin{aligned}
& Q^{0}=\left[\begin{array}{cccc}
0 & -2 & 0 & 2 \\
-2 & 0 & -1 & 0 \\
0 & -1 & 5 & 1 \\
2 & 0 & 1 & -4
\end{array}\right], \quad Q^{1}=\left[\begin{array}{cccc}
-1 & -1 & 0 & 0 \\
-1 & 4 & -1 & 0 \\
0 & -1 & 6 & 1 \\
0 & 0 & 1 & -2
\end{array}\right] \\
& S(\boldsymbol{y})=\left[\begin{array}{cccc}
-y_{1} & -2-y_{1} & 0 & 2 \\
-2-y_{1} & +4 y_{1} & -1-y_{1} & 0 \\
0 & -1-y_{1} & 5+6 y_{1} & 1+y_{1} \\
2 & 0 & 1+y_{1} & -4-2 y_{1}
\end{array}\right]
\end{aligned}
$$

Estimation of Rank of Structured Matrices

1 is the one vector $\left[\begin{array}{lll}1 & \cdots & 1\end{array}\right]^{\mathrm{T}}$.

Proposition 1 of [Grone et al., 1992]

$$
\left.\begin{array}{l}
G \text { is connected and bipartite } \\
M \succeq O, M \mathbf{1}>0 \\
M_{i j}>0 \quad \forall(i, j) \in \boldsymbol{E}
\end{array}\right\} \Longrightarrow \operatorname{rank} M \geq n-1
$$

Bipartite graph if G has no odd-length cycles.

\checkmark Bipartite

NG: disconnected

NG: odd-length cycles

Idea for $S(\boldsymbol{y})$ with Structured Sparsity

Assume G is bipartite and connected.

To show the tightness, it suffices that ...
at least one optimal \boldsymbol{y}^{*} satisfies $\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\} \geq n-1$
\Longleftarrow all optimal solutions \boldsymbol{y}^{*} satisfies $\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\} \geq n-1$
\Longleftarrow any feasible point \boldsymbol{y} satisfies $\operatorname{rank}\{S(\boldsymbol{y})\} \geq n-1$
\Longleftarrow any feasible point \boldsymbol{y} satisfies $S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{i j}>0 \forall(i, j) \in E$
\Longleftarrow the following equation has no solutions for any $(i, j) \in E$:

$$
\boldsymbol{y} \geq 0, \quad S(\boldsymbol{y}) \succeq O, \quad[S(\boldsymbol{y})]_{i j} \leq 0 .
$$

Idea for $S(\boldsymbol{y})$ with Structured Sparsity

Assume G is bipartite and connected.

To show the tightness, it suffices that ...
at least one optimal \boldsymbol{y}^{*} satisfies $\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\} \geq n-1$
\Longleftarrow all optimal solutions \boldsymbol{y}^{*} satisfies $\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\} \geq n-1$
\Longleftarrow any feasible point \boldsymbol{y} satisfies $\operatorname{rank}\{S(\boldsymbol{y})\} \geq n-1$
\Longleftarrow any feasible point \boldsymbol{y} satisfies $S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{i j}>0 \forall(i, j) \in E$
\Longleftarrow the following equation has no solutions for any $(i, j) \in E$:

$$
\boldsymbol{y} \geq 0, \quad S(\boldsymbol{y}) \succeq O, \quad[S(\boldsymbol{y})]_{i j} \leq 0 .
$$

Idea for $S(\boldsymbol{y})$ with Structured Sparsity

Assume G is bipartite and connected.

To show the tightness, it suffices that ...
at least one optimal \boldsymbol{y}^{*} satisfies $\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\} \geq n-1$
\Longleftarrow all optimal solutions \boldsymbol{y}^{*} satisfies $\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\} \geq n-1$
\Longleftarrow any feasible point \boldsymbol{y} satisfies $\operatorname{rank}\{S(\boldsymbol{y})\} \geq n-1$
\Longleftarrow any feasible point \boldsymbol{y} satisfies $S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{i j}>0 \forall(i, j) \in E$
\Longleftarrow the following equation has no solutions for any $(i, j) \in E$:

$$
\boldsymbol{y} \geq 0, \quad S(\boldsymbol{y}) \succeq O, \quad[S(\boldsymbol{y})]_{i j} \leq 0 .
$$

Idea for $S(\boldsymbol{y})$ with Structured Sparsity

Assume G is bipartite and connected.

To show the tightness, it suffices that ...
at least one optimal \boldsymbol{y}^{*} satisfies $\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\} \geq n-1$
\Longleftarrow all optimal solutions \boldsymbol{y}^{*} satisfies $\operatorname{rank}\left\{S\left(\boldsymbol{y}^{*}\right)\right\} \geq n-1$
\Longleftarrow any feasible point \boldsymbol{y} satisfies $\operatorname{rank}\{S(\boldsymbol{y})\} \geq n-1$
\Longleftarrow any feasible point \boldsymbol{y} satisfies $S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{i j}>0 \forall(i, j) \in E$
\Longleftarrow the following equation has no solutions for any $(i, j) \in E$:

$$
\boldsymbol{y} \geq 0, \quad S(\boldsymbol{y}) \succeq O, \quad[S(\boldsymbol{y})]_{i j} \leq 0 .
$$

Our Proposed Tightness Condition

Tightness Condition for QCQPs with Bipartite Structures

Tight if G is a bipartite and connected graph and the system

$$
\begin{equation*}
\boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{k \ell} \leq 0, \tag{2}
\end{equation*}
$$

has no solutions for any $(k, \ell) \in E$.

- $|E|$ feasibility systems to check
- Structure-based condition
- no dependence on sign-definiteness

Bad: connectivity of G is required.
\Longrightarrow removed by perturbation (next slide)

ε-Perturbed QCQPs

Let $P \neq O \in \mathbb{S}^{n}$ and $\varepsilon>0$

$$
v_{\varepsilon}^{*}=\min \left\{\boldsymbol{x}^{\mathrm{T}}\left(Q^{0}+\varepsilon P\right) \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq b_{p} \quad \forall p \in[m]\right\} \quad\left(\mathcal{P}^{\varepsilon}\right)
$$

ε-Perturbed QCQPs

Let $P \neq O \in \mathbb{S}^{n}$ and $\varepsilon>0$

$$
v_{\varepsilon}^{*}=\min \left\{\boldsymbol{x}^{\mathrm{T}}\left(Q^{0}+\varepsilon P\right) \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq b_{p} \quad \forall p \in[m]\right\}
$$

\downarrow converging as $\varepsilon \downarrow 0$

$$
\begin{equation*}
v^{*}=\min \left\{\boldsymbol{x}^{\mathrm{T}} Q^{0} \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq b_{p} \quad \forall p \in[m]\right\} \tag{P}
\end{equation*}
$$

ε-Perturbed QCQPs

Let $P \neq O \in \mathbb{S}^{n}$ and $\varepsilon>0$

$$
v_{\varepsilon}^{*}=\min \left\{\boldsymbol{x}^{\mathrm{T}}\left(Q^{0}+\varepsilon P\right) \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq b_{p} \quad \forall p \in[m]\right\} \quad\left(\mathcal{P}^{\varepsilon}\right)
$$

Ex. $\min \left\{\boldsymbol{x}^{\mathrm{T}}\left(Q^{0}+\varepsilon P\right) \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{1} \boldsymbol{x} \leq 10\right\}$

$$
Q^{0}=\left[\begin{array}{cccc}
0 & -2 & 0 & 0 \\
-2 & 0 & -1 & 0 \\
0 & -1 & 5 & 0 \\
0 & 0 & 0 & -4
\end{array}\right], \quad Q^{1}=\left[\begin{array}{cccc}
5 & 2 & 0 & 0 \\
2 & -1 & 3 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right],
$$

ε-Perturbed QCQPs

Let $P \neq O \in \mathbb{S}^{n}$ and $\varepsilon>0$

$$
v_{\varepsilon}^{*}=\min \left\{\boldsymbol{x}^{\mathrm{T}}\left(Q^{0}+\varepsilon P\right) \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{p} \boldsymbol{x} \leq b_{p} \quad \forall p \in[m]\right\}
$$

Ex. $\min \left\{\boldsymbol{x}^{\mathrm{T}}\left(Q^{0}+\varepsilon P\right) \boldsymbol{x} \mid \boldsymbol{x}^{\mathrm{T}} Q^{1} \boldsymbol{x} \leq 10\right\}$

$$
Q^{0}=\left[\begin{array}{cccc}
0 & -2 & 0 & 0 \\
-2 & 0 & -1 & 0 \\
0 & -1 & 5 & 0 \\
0 & 0 & 0 & -4
\end{array}\right], \quad Q^{1}=\left[\begin{array}{cccc}
5 & 2 & 0 & 0 \\
2 & -1 & 3 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right], \quad P=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] .
$$

Perturbation and Tightness

Theoretical background of ε-perturbed QCQPs.

Lemma

The original QCQP admits tight relaxation if there exists
$\left\{\varepsilon_{t}\right\}_{t=1}^{\infty} \subseteq \mathbb{R}_{+}$: monotonically decreasing and $\lim _{t \rightarrow \infty} \varepsilon_{t}=0$
$P \neq O: n \times n$ negative semidefinite matrix
such that SDP relaxation of $\left(\mathcal{P}^{\varepsilon_{t}}\right)$ is tight for any ε_{t}.

Comparison of Tightness Conditions

	G	Systems to check
${\text { Burer } \& \mathrm{Ye}^{3}}{ }^{4}$	no edges	$\mathcal{S}_{=}$for all (k, ℓ) such that $k=\ell$
Azuma et al. ${ }^{4}$	forest	$\mathcal{S}_{=}$for all $(k, \ell) \in \mathcal{E}$
Proposed method	bipartite	\mathcal{S}_{\leq}for all $(k, \ell) \in \mathcal{E}$

where systems are:

a LP or a SDP: tractable problem

$$
\text { find } \boldsymbol{y} \geq 0 \text { such that } \quad S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{k \ell} \diamond 0 \text {. }
$$

[^2]
Outline

1. Introduction
2. Tightness for sign-definite QCQPs
3. Extension to sign-indefinite QCQPs

- Tightness \& solution's rank of dual SDP relaxation
- Upper bound for rank of matrices
- Tightness conditions under bipartite structure
- Adaptation for disconnected structures

4. Examples
5. Summary

Example 1

Ex. $\quad n=2, \quad m=1$,

$$
\min . \quad \boldsymbol{x}^{\mathrm{T}}\left[\begin{array}{ll}
-3 & -1 \\
-1 & -2
\end{array}\right] \boldsymbol{x} \quad \text { s.t. } \quad \boldsymbol{x}^{\mathrm{T}}\left[\begin{array}{ll}
3 & 4 \\
4 & 6
\end{array}\right] \boldsymbol{x} \leq 1
$$

- $\mathcal{E}=\{(1,2),(2,1)\}$
- Systems - only for $(k, \ell)=(1,2)$

$$
y_{1} \geq 0, \quad\left[\begin{array}{ll}
-3 & -1 \\
-1 & -2
\end{array}\right]+y_{1}\left[\begin{array}{ll}
3 & 4 \\
4 & 6
\end{array}\right] \succeq O, \quad-1+4 y_{1} \leq 0
$$

- $S(y) \succeq O \quad \Longleftrightarrow \quad y_{1} \geq 3+\frac{3 \sqrt{6}}{2} \simeq 6.67$
second inequality $\Longrightarrow-1+4 y_{1}>0 \quad \Longrightarrow v^{*}=v_{\mathrm{SDP}}^{*}$

Summary

Summary

- QCQPs without sign-definiteness were analyzed.
- New sufficient condition of tightness was proposed.
- It was compared with three existing results.

Future works

- How to expand applicable problems from bipartite structures.
- How to transform more general problems to QCQP admitting tight SDP relaxation.

More information is available at DOI:10.1007/s10898-022-01268-3,
"Exact SDP relaxations for quadratic programs with bipartite graph structures."
Thank you for your attention!

Backup Slides

Essence of Proof (1)

Transform from general QCQPs to sparse QCQPs.

1. Objective function and constraints have the form:

$$
\boldsymbol{x}^{\mathrm{T}}\left[\begin{array}{cccc}
Q_{11}^{p} & Q_{12}^{p} & Q_{13}^{p} & Q_{14}^{p} \\
Q_{21}^{p} & Q_{22}^{p} & Q_{23}^{p} & Q_{24}^{p} \\
Q_{31}^{p} & Q_{32}^{p} & Q_{33}^{p} & Q_{34}^{p} \\
Q_{41}^{p} & Q_{42}^{p} & Q_{43}^{p} & Q_{44}^{p}
\end{array}\right] \boldsymbol{x}, \quad \forall p,
$$

where $n=4, Q^{p}$: symmetric matrices.
2. Assume remove edges $(1,3)$ and $(2,4)$ because of $Q_{13}^{p}<0, \quad Q_{24}^{p}<0$.

Essence of Proof (2)

3. New variable $z:=-x$ is introduced.
4. It can be written as

$$
\left[x x^{\mathrm{T}}\left[\begin{array}{cccc|cccc}
Q_{11}^{p} & Q_{12}^{p} & 0 & Q_{14}^{p} & 0 & 0 & -\frac{1}{2} Q_{13}^{p} & 0 \\
Q_{21}^{p} & Q_{22}^{p} & Q_{23}^{p} & 0 & 0 & 0 & 0 & 0 \\
0 & Q_{32}^{p} & Q_{33}^{3} & Q_{34}^{p} & -\frac{1}{2} Q_{31}^{p} & 0 & 0 & 0 \\
Q_{41}^{p} & 0 & Q_{43}^{p} & 0 \\
\hline 0 & 0 & -\frac{1}{2} Q_{44}^{p} & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & & & & \\
-\frac{1}{2} Q_{31}^{p} & 0 & 0 & 0 & & 0 & & \\
0 & 0 & 0 & 0 & & &
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right], \forall p .\right.
$$

5. Off-diagonal elements are all nonnegative with some zero elements (bipartite).

The obtained problem satisfies our simple corollary.

Forest and Bipartite Graph

Let $G(\mathcal{V}, \mathcal{E})$ be a nonempty graph.
Cycle

	Cycle	
	Odd length	Even length
\#Components		
Tree		1
Forest		≥ 1
Bipartite	allowed	≥ 1

Tree

Forest

Bipartite

Cycle Basis

$\mathcal{C}:=\left\{\mathcal{C}_{1}, \ldots, \mathcal{C}_{\kappa}\right\}:$ set of (simple) cycles
$A \triangle B: \quad$ symmetric difference of A and B

$$
A \triangle B:=(A \backslash B) \cup(B \backslash A)
$$

\mathcal{C} is called a cycle basis of G
$\Longleftrightarrow\left\{\begin{array}{l}\circ \text { allows any cycle in } G \text { to be expressed by } \Delta \text { of its elements } \\ \circ \text { be a minimum set }\end{array}\right.$

Ex.

Estimation of Rank of Sparse Matrices

Let M be an $n \times n$ symmetric matrix, $G(\mathcal{V}, \mathcal{E})$ be a graph.

For tree

$$
\left.\begin{array}{l}
G \text { is tree } \\
M \succeq O \\
M_{i j} \neq 0 \quad \forall(i, j) \in \mathcal{E}_{M}
\end{array}\right\} \Longrightarrow \operatorname{rank} M \geq n-1
$$

For bipartite

[Grone et al., 1992, Proposition 1]

$$
\left.\begin{array}{l}
G \text { is connected and bipartite } \\
M \succeq O, M \mathbf{1}>0 \\
M_{i j}>0 \quad \forall(i, j) \in \mathcal{E}_{M}
\end{array}\right\} \Longrightarrow \operatorname{rank} M \geq n-1
$$

where 1 is the one vector $[1 \cdots 1]^{\mathrm{T}}$.

Instance for SDP relaxation (QCQP side)

Example 1^{5}

$$
\begin{aligned}
v^{*}=\min & x^{2}+y^{2} \\
\text { s.t. } & y^{2} \geq 1, x^{2}-x y \geq 1, x^{2}+x y \geq 1
\end{aligned}
$$

From last two inequality,

$$
\begin{aligned}
& x y>0\left.\Longrightarrow \begin{array}{rlr}
x y & > & -x y \\
x y<0 & \Longrightarrow-x y & > \\
& x y
\end{array}\right\} \Longrightarrow x^{2} \geq|x||y|+1 \\
& x^{2} \geq 1 . \\
& \therefore x^{2}+y^{2} \geq(|x||y|+1)+1 \geq 3
\end{aligned}
$$

[^3]
Instance for SDP relaxation (SDP side)

$$
\left.\begin{array}{rl}
v^{*} & =\min \left\{x^{2}+y^{2} \mid y^{2} \geq 1, x^{2}-x y \geq 1, x^{2}+x y \geq 1\right\} \\
& =\min \left\{\boldsymbol{x}^{\mathrm{T}} I \boldsymbol{x} \left\lvert\, \begin{array}{l}
\boldsymbol{x}^{\mathrm{T}}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \boldsymbol{x} \geq 1, \\
\boldsymbol{x}^{\mathrm{T}}\left[\begin{array}{cc}
1 \\
1 & -1 / 2 \\
-1 / 2 & 0
\end{array}\right] \boldsymbol{x} \geq 1, \boldsymbol{x}^{\mathrm{T}}\left[\begin{array}{cc}
1 & 1 / 2 \\
1 / 2 & 0
\end{array}\right] \boldsymbol{x} \geq 1
\end{array}\right.\right\} \\
& \geq \min \left\{I \bullet X \left\lvert\,\left[\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right] \bullet X \geq 1\right., X \succeq O\right. \\
{\left[\begin{array}{cc}
1 & -1 / 2 \\
-1 / 2 & 0
\end{array}\right] \bullet X \geq 1,\left[\begin{array}{cc}
1 & 1 / 2 \\
1 / 2 & 0
\end{array}\right] \bullet X \geq 1}
\end{array}\right\}
$$

$$
X=I \text { is feasible } \Longrightarrow v_{\mathrm{SDP}}^{*} \leq 2<3 \leq v^{*}
$$

QCQP's Applications

Used in various problems:

- MAX-CUT, MAX-CLIQUE
- sensor (facility) location problem, pooling problem
- optimal flow problem, polynomial optimization
- (robust / sparse) principal component analysis, phase retrieval

Alternative Result for Theorem 3.7

Theorem 3.7'

Suppose Assumption 3.8 holds \& G is a forest and connected graph.
Then, $v^{*}=v_{\mathrm{SDP}}^{*}$ if for all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$
\begin{equation*}
\boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{k \ell}=0, \tag{??}
\end{equation*}
$$

Example 2

$$
\begin{aligned}
\min & \boldsymbol{x}^{\mathrm{T}} Q^{0} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{x}^{\mathrm{T}} Q^{1} \boldsymbol{x} \leq 10, \quad \boldsymbol{x}^{\mathrm{T}} Q^{2} \boldsymbol{x} \leq 10, \quad \boldsymbol{x}^{\mathrm{T}} Q^{3} \boldsymbol{x} \leq 5
\end{aligned}
$$

where

$$
\begin{aligned}
& Q^{0}=\left[\begin{array}{cccc}
0 & -2 & 0 & 2 \\
-2 & 0 & -1 & 0 \\
0 & -1 & 5 & 1 \\
2 & 0 & 1 & -4
\end{array}\right], Q^{1}=\left[\begin{array}{cccc}
5 & 2 & 0 & 1 \\
2 & -1 & 3 & 0 \\
0 & 3 & 3 & -1 \\
1 & 0 & -1 & 4
\end{array}\right], \\
& Q^{2}=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
1 & 4 & -1 & 0 \\
0 & -1 & 6 & 1 \\
0 & 0 & 1 & -2
\end{array}\right], Q^{3}=\left[\begin{array}{cccc}
4 & -1 & 0 & 0 \\
-1 & -2 & 1 & 0 \\
0 & 1 & -2 & 4 \\
0 & 0 & 4 & 2
\end{array}\right] .
\end{aligned}
$$

Sparsity of Example 2

$$
\begin{aligned}
& Q^{0}=\left[\begin{array}{cccc}
0 & -2 & 0 & 2 \\
-2 & 0 & -1 & 0 \\
0 & -1 & 5 & 1 \\
2 & 0 & 1 & -4
\end{array}\right], Q^{1}=\left[\begin{array}{cccc}
5 & 2 & 0 & 1 \\
2 & -1 & 3 & 0 \\
0 & 3 & 3 & -1 \\
1 & 0 & -1 & 4
\end{array}\right], \\
& Q^{2}=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
1 & 4 & -1 & 0 \\
0 & -1 & 6 & 1 \\
0 & 0 & 1 & -2
\end{array}\right], Q^{3}=\left[\begin{array}{cccc}
4 & -1 & 0 & 0 \\
-1 & -2 & 1 & 0 \\
0 & 1 & -2 & 4 \\
0 & 0 & 4 & 2
\end{array}\right] .
\end{aligned}
$$

$$
\mathcal{E}=\left\{\begin{array}{l}
(1,2),(2,1),(1,4),(4,1), \\
(2,3),(3,2),(3,4),(4,3)
\end{array}\right\} .
$$

Systems of Example 2

Consider the problem for $(k, \ell) \in \mathcal{E}$:

$$
\begin{align*}
\mu^{*}=\min & S(\boldsymbol{y})_{k \ell} \tag{3}\\
\text { s.t. } & \boldsymbol{y} \geq \mathbf{0}, S(\boldsymbol{y}) \succeq O .
\end{align*}
$$

(k, ℓ)	$(1,2)$	$(2,3)$	$(1,4)$	$(3,4)$
μ^{*}	18.58	12.84	8.897	0.3215

All positives \Longrightarrow the following systems have no solutions:

$$
\begin{equation*}
\boldsymbol{y} \geq \mathbf{0}, S(\boldsymbol{y}) \succeq O, S(\boldsymbol{y})_{k \ell} \leq 0 \tag{2}
\end{equation*}
$$

Result for Disconnected Sparsity Structures

Let $G(\mathcal{V}, \mathcal{E})$ be the aggregated sparsity pattern graph of (\mathcal{P}).

Theorem 4.2

Suppose Assumption 3.6 holds $\& G$ is a forest and connected.
Then, $v^{*}=v_{\mathrm{SDP}}^{*}$ if, for all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$
\begin{equation*}
\boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{k \ell}=0, \tag{??}
\end{equation*}
$$

Theorem 4.6

Suppose Assumption 4.3 holds \& G is a bipartite and connected.
Then, $v^{*}=v_{\text {SDP }}^{*}$ if, for all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$
\begin{equation*}
\boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{k \ell} \leq 0, \tag{2}
\end{equation*}
$$

Result for Disconnected Sparsity Structures

Let $G(\mathcal{V}, \mathcal{E})$ be the aggregated sparsity pattern graph of (\mathcal{P}).

Theorem 4.2

Suppose Assumption 3.6 holds \& G is a forest.
Then, $v^{*}=v_{\mathrm{SDP}}^{*}$ if, for all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$
\begin{equation*}
\boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{k \ell}=0, \tag{??}
\end{equation*}
$$

Theorem 4.6

Suppose Assumption 4.3 holds $\& G$ is a bipartite.
Then, $v^{*}=v_{\mathrm{SDP}}^{*}$ if, for all $(k, \ell) \in \mathcal{E}$, the following system has no solutions:

$$
\begin{equation*}
\boldsymbol{y} \geq 0, S(\boldsymbol{y}) \succeq O,[S(\boldsymbol{y})]_{k \ell} \leq 0, \tag{2}
\end{equation*}
$$

Sketch of Proof

Proof of Theorem 4.6.

1. Let \mathcal{F} be the set of additional edges.
2. Define $P \preceq O$ as

$$
P_{i j}= \begin{cases}-\operatorname{deg}(i) & \text { if } i=j, \\ 1 & \text { if }(i, j) \in \mathcal{F} \text { or }(j, i) \in \mathcal{F}, \\ 0 & \text { otherwise },\end{cases}
$$

3. $\left(\mathcal{P}^{\varepsilon}\right)$ satisfies assumptions of Theorem 3.10.
\Longrightarrow SDP relaxation of $\left(\mathcal{P}^{\varepsilon}\right)$ is tight.
4. Using Lemma 4.4 (4.5), we conclude $v^{*}=v_{\mathrm{SDP}}^{*}$.

Previous Works

- Trust-region subproblems (TRS: QCQP with one constraint) Yakubovich[1971]
- Extended TRS (TRS + linear constraints) Jeyakumar[2014], Hsia and Sheu[2013], Locatelli[2016]
- QCQPs with sign-definiteness Kim and Kojima[2003], Sojoudi and Lavaei[2014]
- Tightness by faces of convex lagrangian multipliers Wang and Kılınç-Karzan[2021]
- Rank-one generated cones Argue, Kilınç-Karzan and Wang[2020]

Proposed Condition Covers Condition (1)

Proposition

If a given (\mathcal{P}) satisfies the condition (1), proposed condition can detect the tightness of its SDP relaxation.

Idea:
We develop conversion method of QCQPs such that

- The obtained QCQP has bipartite sparsity.
- The obtained QCQP satisfies proposed condition: $\forall(k, \ell) \in \mathcal{E}$, the system (2) has no solutions.

[^0]: ${ }^{1}$ Sunyoung Kim and Masakazu Kojima. Strong duality of a conic optimization problem with a single hyperplane and two cone constraints. arXiv:2111.03251v2. 2021.

[^1]: ${ }^{2}$ Somayeh Sojoudi and Javad Lavaei. "Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure". In: SIAM Journal on Optimization 24.4 (2014), pp. 1746-1778.

[^2]: ${ }^{3}$ Samuel Burer and Yinyu Ye. "Exact semidefinite formulations for a class of (random and non-random) nonconvex quadratic programs". In: Mathematical Programming 181.1 (2020), pp. 1-17.
 ${ }^{4}$ Godai Azuma et al. "Exact SDP Relaxations of Quadratically Constrained Quadratic Programs with Forest Structures". In: Journal of Global Optimization 82.2 (2022), pp. 243-262.

[^3]: ${ }^{5}$ Luo-Lecture14.

