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QCQP: Quadratically Constrained Quadratic Programming

Consider a quadratic programming with quadratic constraints:

v∗ := min
x∈Rn

xTQ0x

s.t. xTQpx ≤ bp, p ∈ [m] := {1, . . . ,m},
(P )

• Generally, non‐convex & NP‐hard

• Semidefinite programming (SDP) relaxation

Applications
Binary programming, MAX‐CUT, optimal flow problems,...
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Semidefinite Programming (SDP) Relaxation

v∗ = min
{
xTQ0x

∣∣xTQpx ≤ bp ∀p ∈ [m]
}

= min

{
Q0 •X

∣∣∣∣∣ X = xxT

Qp •X ≤ bp ∀p ∈ [m]

}

≥ min

{
Q0 •X

∣∣∣∣∣ X ⪰ xxT

Qp •X ≤ bp ∀p ∈ [m]

}
=: v∗SDP (PR)

where

◦ Qp •X :=
∑
i,j

Qp
ijXij ,

◦ X ⪰ O ⇐⇒ X is positive semidefinite.

Pros: calculatable in polynomial time.

Cons: v∗ ̸= v∗SDP in general
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Tightness for SDP Relaxation

The following equality holds:

v∗ = min

{
Q0 •X

∣∣∣∣∣ X ⪰ O

Qp •X ≤ bp ∀p ∈ [m]

}
= v∗SDP

⇐⇒ rank‐1 solution X∗ exists

Tight SDP relaxation =⇒

◦ Original QCQP is exactly solvable (in theorically)

◦ The gap between a class of QCQPs and their relaxations is identified.

Motivation

What conditions of QCQPs guarantee the tightness?
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Assumption in This Talk

Assumption

(i) Both (PR) and (DR) have optimal solutions, and

(ii) At least one of the following two conditions holds:

(a) the feasible region of (PR) is bounded, or

(b) the set of optimal solutions for (DR) is bounded.

• strong duality holds: (Kim and Kojima1)

∃(X∗,y∗): solutions of (PR) and (DR) such that

X∗S(y∗) = O.

1Sunyoung Kim and Masakazu Kojima. Strong duality of a conic optimization problem with a single hyperplane and two cone constraints.
arXiv:2111.03251v2. 2021.
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Sign‐definite QCQP

Definition
Sign‐definite QCQP when

same index =⇒ same sign (≥ or ≤) among Q0, . . . , Qm

Ex.: min. xTQ0x s.t. xTQpx ≤ 10, p ∈ [3]

Q0 :=


0 −2 0 2

−2 0 −1 0

0 −1 5 1

2 0 1 −4

 , Q1 :=


5 −2 0 1

−2 −1 −3 0

0 −3 3 1

1 0 1 4

 ,

Q2 :=


−1 −1 0 0

−1 4 −1 0

0 −1 6 1

0 0 1 −2

 , Q3 :=


4 −1 0 0

−1 −2 0 0

0 0 −2 4

0 0 4 2

 .
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QCQP’s Sparsity

Aggregated Sparsity Pattern Graph G(V,E)

= Nonzero pattern of variable matrices in dual problem

V := {1, . . . , n}, E := {(i, j) | i ̸= j, [Qp]ij ̸= 0 for some Qp} .

Ex.:

Q0 =


0 −2 0 2

−2 0 −1 0

0 −1 5 1

2 0 1 −4

 , Q1 =


−1 −1 0 0

−1 4 −1 0

0 −1 6 1

0 0 1 −2

 .

1 2

43

Edge sign:
σij =

 −1 if (i, j)th elements ≤ 0

+1 if (i, j)th elements ≥ 0.

Ex. σ12 = σ23 = −1, σ14 = σ34 = +1.
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Tightness of Sign‐definite QCQP

Cycle‐based conditions:

Theorem 22 [Sojoudi and Lavaei, 2014]

Tight if the following equation holds∏
(i,j)∈C

σij = (−1)|C| for any cycles C in G (1)

i.e., even‐length cycle ⇐⇒ the number of negative σij are even
(odd) (odd)

Ex. σij = −1, σij = +1 1 2

43
2Somayeh Sojoudi and Javad Lavaei. “Exactness of Semidefinite Relaxations for Nonlinear Optimization Problems with Underlying Graph Structure”. In:
SIAM Journal on Optimization 24.4 (2014), pp. 1746–1778.
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Problem and Our Objective

Problem:

◦ Only a few problems are sign‐definite QCQPs.

Objective of our research

To expand the range of applicable problems by

◦ dropping the sign‐definite condition

◦ employing the rank of dual SDP relaxation instead
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Primal/Dual Problems of SDP Relaxation

min
x∈Rn

{
xTQ0x

∣∣xTQpx ≤ bp, p ∈ [m]
}

(P )

↙

Primal

min
X

Q0 •X

s.t. Qp •X ≤ bp, p ∈ [m]

X ⪰ O

(PR)

Dual

max
y∈Rm

−bTy

s.t. y ≥ 0,

S(y) ⪰ O

(DR)

Variable on dual side: (y, S(y)) where

S(y) := Q0 +

m∑
p=1

ypQ
p for y ∈ Rm.
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Dual Solution of rank‐(n− 1) is Important for Tightness

Primal

min
X

Q0 •X

s.t. Qp •X ≤ bp, p ∈ [m]

X ⪰ O

(PR)

Dual

max
y∈Rm

−bTy

s.t. y ≥ 0,

S(y) ⪰ O

(DR)

Tight if Rank‐1 solution X∗

⇐= Rank‐(n− 1) solution S(y∗)

under strong duality

Proof. There exists X∗ satisfying X∗S(y∗) = O.
From Sylvester’s rank inequality,

rank(X∗) ≤ n− rank{S(y∗)}+ rank{X∗S(y∗)}

= n− rank{S(y∗)}︸ ︷︷ ︸
≥n−1

≤ 1.

12



Dual Solution of rank‐(n− 1) is Important for Tightness

Primal

min
X

Q0 •X

s.t. Qp •X ≤ bp, p ∈ [m]

X ⪰ O

(PR)

Dual

max
y∈Rm

−bTy

s.t. y ≥ 0,

S(y) ⪰ O

(DR)

Tight if Rank‐1 solution X∗ ⇐= Rank‐(n− 1) solution S(y∗)

under strong duality

Proof. There exists X∗ satisfying X∗S(y∗) = O.
From Sylvester’s rank inequality,

rank(X∗) ≤ n− rank{S(y∗)}+ rank{X∗S(y∗)}

= n− rank{S(y∗)}︸ ︷︷ ︸
≥n−1

≤ 1.

12



Recent Tightness Conditions

Based on dual SDP or its rank:

• Extended Trust‐region subproblems
Jeyakumar[2014], Hsia and Sheu[2013], Locatelli[2016]

• Diagonal QCQPs Burer and Ye[2020]

• Tightness by faces of convex lagrangian multipliers
Wang and Kılınç‐Karzan[2021]

• Rank‐one generated cones
Argue, Kılınç‐Karzan and Wang[2020]
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Sparsity Pattern of S(y) under G

S(y) has the same sparsity structure as that of QCQP.

Observation

[S(y)]ij = [Q0]ij +
∑
p∈[m]

yp[Q
p]ij = 0 ∀y ∈ Rm ∀(i, j) ̸∈ E

Ex.:

Q0 =


0 −2 0 2

−2 0 −1 0

0 −1 5 1

2 0 1 −4

 , Q1 =


−1 −1 0 0

−1 4 −1 0

0 −1 6 1

0 0 1 −2

 .

S(y) =


−y1 −2− y1 0 2

−2− y1 +4y1 −1− y1 0

0 −1− y1 5 + 6y1 1 + y1

2 0 1 + y1 −4− 2y1


1 2

43
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Estimation of Rank of Structured Matrices

1 is the one vector [1 · · · 1]T.

Proposition 1 of [Grone et al., 1992]

G is connected and bipartite
M ⪰ O, M1 > 0

Mij > 0 ∀(i, j) ∈ E

 =⇒ rankM ≥ n− 1

Bipartite graph if G has no odd‐length cycles.

1 2

43

✓ Bipartite

1 2

43

NG: disconnected

1 2

43

NG: odd‐length cycles
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Idea for S(y) with Structured Sparsity

Assume G is bipartite and connected.

To show the tightness, it suffices that ...

at least one optimal y∗ satisfies rank{S(y∗)} ≥ n− 1

⇐= all optimal solutions y∗ satisfies rank{S(y∗)} ≥ n− 1

⇐= any feasible point y satisfies rank{S(y)} ≥ n− 1

⇐= any feasible point y satisfies S(y) ⪰ O, [S(y)]ij > 0 ∀(i, j) ∈ E

⇐= the following equation has no solutions for any (i, j) ∈ E:

y ≥ 0, S(y) ⪰ O, [S(y)]ij ≤ 0.
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Our Proposed Tightness Condition

Tightness Condition for QCQPs with Bipartite Structures

Tight if G is a bipartite and connected graph and the system

y ≥ 0, S(y) ⪰ O, [S(y)]kℓ ≤ 0, (2)

has no solutions for any (k, ℓ) ∈ E.

• |E| feasibility systems to check

• Structure‐based condition

• no dependence on sign‐definiteness

Bad: connectivity of G is required.
=⇒ removed by perturbation (next slide)
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ε‐Perturbed QCQPs

Let P ̸= O ∈ Sn and ε > 0

v∗ε = min
{
xT

(
Q0 + εP

)
x
∣∣ xTQpx ≤ bp ∀p ∈ [m]

}
(Pε)
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ε‐Perturbed QCQPs

Let P ̸= O ∈ Sn and ε > 0

v∗ε = min
{
xT

(
Q0 + εP

)
x
∣∣ xTQpx ≤ bp ∀p ∈ [m]

}
(Pε)

↓ converging as ε ↓ 0

v∗ = min
{
xTQ0x

∣∣ xTQpx ≤ bp ∀p ∈ [m]
}

(P )
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ε‐Perturbed QCQPs

Let P ̸= O ∈ Sn and ε > 0

v∗ε = min
{
xT

(
Q0 + εP

)
x
∣∣ xTQpx ≤ bp ∀p ∈ [m]

}
(Pε)

Ex. min
{
xT

(
Q0 + εP

)
x
∣∣ xTQ1x ≤ 10

}

Q0 =


0 −2 0 0

−2 0 −1 0

0 −1 5 0

0 0 0 −4

 , Q1 =


5 2 0 0

2 −1 3 0

0 3 3 0

0 0 0 4

 ,

P =


0 0 0 1

0 0 0 0

0 0 0 1

1 0 1 0

 .

1 2

43
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Perturbation and Tightness

Theoretical background of ε‐perturbed QCQPs.

Lemma
The original QCQP admits tight relaxation if there exists

{εt}∞t=1 ⊆ R+ : monotonically decreasing and lim
t→∞

εt = 0

P ̸= O : n× n negative semidefinite matrix

such that SDP relaxation of (Pεt) is tight for any εt.
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Comparison of Tightness Conditions

G Systems to check

Burer & Ye3 no edges S= for all (k, ℓ) such that k = ℓ

Azuma et al.4 forest S= for all (k, ℓ) ∈ E

Proposed method bipartite S≤ for all (k, ℓ) ∈ E

where systems are:

find y ≥ 0 such that S(y) ⪰ O, [S(y)]kℓ ♢ 0. (S♢)

a LP or a SDP: tractable problem

3Samuel Burer and Yinyu Ye. “Exact semidefinite formulations for a class of (random and non‐random) nonconvex quadratic programs”. In: Mathematical
Programming 181.1 (2020), pp. 1–17.
4Godai Azuma et al. “Exact SDP Relaxations of Quadratically Constrained Quadratic Programs with Forest Structures”. In: Journal of Global Optimization
82.2 (2022), pp. 243–262.
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Example 1

Ex. n = 2, m = 1,

min . xT

[
−3 −1

−1 −2

]
x s.t. xT

[
3 4

4 6

]
x ≤ 1.

• E = {(1, 2), (2, 1)}

• Systems — only for (k, ℓ) = (1, 2)

y1 ≥ 0,

[
−3 −1

−1 −2

]
+ y1

[
3 4

4 6

]
⪰ O, −1 + 4y1 ≤ 0

• S(y) ⪰ O ⇐⇒ y1 ≥ 3 + 3
√
6

2 ≃ 6.67

=⇒ −1 + 4y1 > 0 =⇒ v∗ = v∗SDPsecond inequality

No solutions
22



Summary

Summary

• QCQPs without sign‐definiteness were analyzed.
• New sufficient condition of tightness was proposed.
• It was compared with three existing results.

Future works

• How to expand applicable problems from bipartite structures.
• How to transform more general problems to QCQP

admitting tight SDP relaxation.

More information is available at DOI:10.1007/s10898‐022‐01268‐3,
“Exact SDP relaxations for quadratic programs with bipartite graph structures.”

Thank you for your attention!
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Essence of Proof (1)

Transform from general QCQPs to sparse QCQPs.

1. Objective function and constraints have the form:

xT


Qp

11 Qp
12 Qp

13 Qp
14

Qp
21 Qp

22 Qp
23 Qp

24

Qp
31 Qp

32 Qp
33 Qp

34

Qp
41 Qp

42 Qp
43 Qp

44

x, ∀p,

where n = 4, Qp: symmetric matrices.

2. Assume remove edges (1, 3) and (2, 4)

because of Qp
13 < 0, Qp

24 < 0.
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Essence of Proof (2)

3. New variable z := −x is introduced.

4. It can be written as

[
x

z

]T



Qp
11 Qp

12 0 Qp
14

Qp
21 Qp

22 Qp
23 0

0 Qp
32 Qp

33 Qp
34

Qp
41 0 Qp

43 Qp
44

0 0 − 1
2Q

p
13 0

0 0 0 0

− 1
2Q

p
31 0 0 0

0 0 0 0

0 0 − 1
2Q

p
13 0

0 0 0 0

− 1
2Q

p
31 0 0 0

0 0 0 0

O


[
x

z

]
, ∀p.

5. Off‐diagonal elements are all nonnegative
with some zero elements (bipartite).

The obtained problem satisfies our simple corollary.
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Forest and Bipartite Graph

Let G(V, E) be a nonempty graph.

Cycle
G Odd length Even length #Components

Tree 1

Forest ≥ 1

Bipartite allowed ≥ 1

1 2

43

Tree

1 2

43

Forest

1 2

43

Bipartite
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Cycle Basis

C := {C1, . . . , Cκ} : set of (simple) cycles

A△B : symmetric difference of A and B

A△B := (A \B) ∪ (B \A)

C is called a cycle basis of G

⇐⇒

 ◦ allows any cycle in G to be expressed by△ of its elements

◦ be a minimum set

Ex.
1 2

43

any two
=⇒

1 2

43

1 2

43

1 2

43
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Estimation of Rank of Sparse Matrices

LetM be an n× n symmetric matrix,
G(V, E) be a graph.

For tree [Johnson et al., 2003, Corollary 3.9]

G is tree
M ⪰ O

Mij ̸= 0 ∀(i, j) ∈ EM

 =⇒ rankM ≥ n− 1

For bipartite [Grone et al., 1992, Proposition 1]

G is connected and bipartite
M ⪰ O, M1 > 0

Mij > 0 ∀(i, j) ∈ EM

 =⇒ rankM ≥ n− 1

where 1 is the one vector [1 · · · 1]T.
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Instance for SDP relaxation (QCQP side)

Example 15

v∗ = min x2 + y2

s.t. y2 ≥ 1, x2 − xy ≥ 1, x2 + xy ≥ 1

From last two inequality,

• xy > 0 =⇒ xy > −xy

xy < 0 =⇒ −xy > xy

}
=⇒ x2 ≥ |x||y| + 1

• x2 ≥ 1.

∴ x2 + y2 ≥ (|x||y|+ 1) + 1 ≥ 3

5Luo‐Lecture14.
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Instance for SDP relaxation (SDP side)

v∗ = min
{
x2 + y2

∣∣ y2 ≥ 1, x2 − xy ≥ 1, x2 + xy ≥ 1
}

= min

xTIx

∣∣∣∣∣∣∣∣∣∣
xT

[
0 0

0 1

]
x ≥ 1,

xT

[
1 −1/2

−1/2 0

]
x ≥ 1, xT

[
1 1/2

1/2 0

]
x ≥ 1


≥ min

I •X

∣∣∣∣∣∣∣∣∣∣

[
0 0

0 1

]
•X ≥ 1, X ⪰ O[

1 −1/2

−1/2 0

]
•X ≥ 1,

[
1 1/2

1/2 0

]
•X ≥ 1


= min {X11 +X22 |X22 ≥ 1, X11 −X12 ≥ 1, X11 +X12 ≥ 1, X ⪰ O}

X = I is feasible =⇒ v∗SDP ≤ 2 < 3 ≤ v∗
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QCQP’s Applications

Used in various problems:

• MAX‐CUT, MAX‐CLIQUE

• sensor (facility) location problem, pooling problem

• optimal flow problem, polynomial optimization

• (robust / sparse) principal component analysis, phase retrieval
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Alternative Result for Theorem 3.7

Theorem 3.7’
Suppose Assumption 3.8 holds & G is a forest and connected graph.
Then, v∗ = v∗SDP if for all (k, ℓ) ∈ E , the following system has no solutions:

y ≥ 0, S(y) ⪰ O, [S(y)]kℓ = 0, (??)
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Example 2

min xTQ0x

s.t. xTQ1x ≤ 10, xTQ2x ≤ 10, xTQ3x ≤ 5

where

Q0 =


0 −2 0 2

−2 0 −1 0

0 −1 5 1

2 0 1 −4

 , Q1 =


5 2 0 1

2 −1 3 0

0 3 3 −1

1 0 −1 4

 ,

Q2 =


−1 1 0 0

1 4 −1 0

0 −1 6 1

0 0 1 −2

 , Q3 =


4 −1 0 0

−1 −2 1 0

0 1 −2 4

0 0 4 2

 .
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Sparsity of Example 2

Q0 =


0 −2 0 2

−2 0 −1 0

0 −1 5 1

2 0 1 −4

 , Q1 =


5 2 0 1

2 −1 3 0

0 3 3 −1

1 0 −1 4

 ,

Q2 =


−1 1 0 0

1 4 −1 0

0 −1 6 1

0 0 1 −2

 , Q3 =


4 −1 0 0

−1 −2 1 0

0 1 −2 4

0 0 4 2

 .

1

3

2

4

E =

{
(1, 2), (2, 1), (1, 4), (4, 1),

(2, 3), (3, 2), (3, 4), (4, 3)

}
.
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Systems of Example 2

Consider the problem for (k, ℓ) ∈ E :

µ∗ = min S(y)kℓ

s.t. y ≥ 0, S(y) ⪰ O.
(3)

(k, ℓ) (1, 2) (2, 3) (1, 4) (3, 4)

µ∗ 18.58 12.84 8.897 0.3215

All positives =⇒ the following systems have no solutions:

y ≥ 0, S(y) ⪰ O, S(y)kℓ ≤ 0. (2)
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Result for Disconnected Sparsity Structures

Let G(V, E) be the aggregated sparsity pattern graph of (P ).

Theorem 4.2
Suppose Assumption 3.6 holds & G is a forest and connected.
Then, v∗ = v∗SDP if, for all (k, ℓ) ∈ E , the following system has no solutions:

y ≥ 0, S(y) ⪰ O, [S(y)]kℓ = 0, (??)

Theorem 4.6
Suppose Assumption 4.3 holds & G is a bipartite and connected.
Then, v∗ = v∗SDP if, for all (k, ℓ) ∈ E , the following system has no solutions:

y ≥ 0, S(y) ⪰ O, [S(y)]kℓ ≤ 0, (2)
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Result for Disconnected Sparsity Structures

Let G(V, E) be the aggregated sparsity pattern graph of (P ).

Theorem 4.2
Suppose Assumption 3.6 holds & G is a forest.
Then, v∗ = v∗SDP if, for all (k, ℓ) ∈ E , the following system has no solutions:

y ≥ 0, S(y) ⪰ O, [S(y)]kℓ = 0, (??)

Theorem 4.6
Suppose Assumption 4.3 holds & G is a bipartite.
Then, v∗ = v∗SDP if, for all (k, ℓ) ∈ E , the following system has no solutions:

y ≥ 0, S(y) ⪰ O, [S(y)]kℓ ≤ 0, (2)
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Sketch of Proof

Proof of Theorem 4.6.

1. Let F be the set of additional edges.

2. Define P ⪯ O as

Pij =


− deg(i) if i = j,

1 if (i, j) ∈ F or (j, i) ∈ F ,

0 otherwise,

3. (Pε) satisfies assumptions of Theorem 3.10.
=⇒ SDP relaxation of (Pε) is tight.

4. Using Lemma 4.4 (4.5), we conclude v∗ = v∗SDP.
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Previous Works

• Trust‐region subproblems (TRS: QCQP with one constraint)
Yakubovich[1971]

• Extended TRS (TRS + linear constraints)
Jeyakumar[2014], Hsia and Sheu[2013], Locatelli[2016]

• QCQPs with sign‐definiteness
Kim and Kojima[2003], Sojoudi and Lavaei[2014]

• Tightness by faces of convex lagrangian multipliers
Wang and Kılınç‐Karzan[2021]

• Rank‐one generated cones
Argue, Kılınç‐Karzan and Wang[2020]
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Proposed Condition Covers Condition (1)

Proposition
If a given (P ) satisfies the condition (1),
proposed condition can detect the tightness of its SDP relaxation.

Idea:
We develop conversion method of QCQPs such that

• The obtained QCQP has bipartite sparsity.

• The obtained QCQP satisfies proposed condition:
∀(k, ℓ) ∈ E , the system (2) has no solutions.
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