High‐rank Solution of Sum‐of‐Squares Relaxations for Exact Matrix Completion

 $\overline{\textsf{Godai Azuma}}^1$ Sunyoung Kim 2 Makoto Yamashita 3 $1A$ oyama Gakuin University $2E$ wha Womans University $3T$ okyo Institute of Technology

ISMP 2024, FB36 (July 26, 2024)

This work was supported by JSPS KAKENHI 24K20738, JP22KJ1307 and JP20H04145 NRF 2021‐R1A2C1003810

Consider a problem in which a matrix completion problem is hidden.

$$
\min_{\mathbf{z}\in\mathbb{R}^n} \quad {\mathbf{u}_2(\mathbf{z})}^{\mathrm{T}} Q \mathbf{u}_2(\mathbf{z})
$$
\n
$$
\text{s.t.} \qquad \mathbf{h}(\mathbf{z}) = 0. \tag{P}
$$

- Polynomial optimization problem (POP) of *z*
- $h(z)$ is a vector of polynomials of z :

$$
h(z) = [z_i z_j - A_{ij}]_{(i,j) \in \Lambda}, \quad A_{ij} \text{ is constant},
$$

$$
u_2(z) = [1, z_1, \dots, z_n, z_1^2, z_1 z_2, \dots, z_n^2]^{\mathrm{T}} \in \mathbb{R}^N := \mathbb{R}^{\binom{n+2}{2}}.
$$

Consider a problem in which a matrix completion problem is hidden.

$$
\min_{\mathbf{z}\in\mathbb{R}^n} \quad {\mathbf{u}_2(\mathbf{z})}^{\mathrm{T}} Q \mathbf{u}_2(\mathbf{z})
$$
\n
$$
\text{s.t.} \quad Ch(\mathbf{z}) = 0. \tag{P}
$$

- Polynomial optimization problem (POP) of *z*
- $h(z)$ is a vector of polynomials of z :

$$
h(z) = [z_i z_j - A_{ij}]_{(i,j) \in \Lambda}, \quad A_{ij} \text{ is constant},
$$

$$
u_2(z) = [1, z_1, \dots, z_n, z_1^2, z_1 z_2, \dots, z_n^2]^{\mathrm{T}} \in \mathbb{R}^N := \mathbb{R}^{\binom{n+2}{2}}.
$$

• For $C = I$, the POP formulation for the rank-one matrix completion

Relaxations and Tightness (*P*): NP‐hard *↙ ↘* Level‐1 Lasserre's Relaxation *⇐* dual *⇒* Level‐1 SOS Relaxation Level‐2 Lasserre's Relaxation . . . *⇐* dual *⇒* Level‐2 SOS Relaxation . . . **Theorem 1**¹ If $Q = I_N$ and $C = I_K$, then level-2 Lasserre's relaxation is tight. (Optimal values of it and (*P*) coincide)

1A. Cosse, L. Demanet. "Stable Rank-One Matrix Completion is Solved by the Level 2 Lasserre Relaxation", Foundations of Computational Mathematics, 21, 891–940, 2021.

Question

- Tightness of relaxations hold without $Q = I_N$ and $C = I_K$?
- If so, how large class of problems?

=*⇒* Classify exactly solvable problems in nonconvex problems

This talk

- High‐rank *Q* preserving tightness
- In particular, $C = I_K$

Sparsity structure *Q* will be used to show high‐rank

Outline

1. Introduction

- 2. POP Formulation of Matrix Completion
- 3. High‐rank matrix *Q* and tightness
	- Sum‐of‐squares relaxation
	- High‐rank solution that the relaxation is tight
	- Existence of *Q* for tight
- 4. Algorithms
	- Program to find *Q*
	- Numerical experiment
- 5. Summary

Rank‐one Matrix Completion Problem

Recovering a rank‐1 matrix from partially given elements.

Intuitive formulation:

To make polynomial optimization (POP),

 \circ introduce $\boldsymbol{x} \in \mathbb{R}^n$ and $\boldsymbol{y} \in \mathbb{R}^m$ *◦* replace *X* by *xy*^T

Then,
$$
X_{ij} - A_{ij} = 0
$$
 \iff $\underbrace{x_i y_j - A_{ij} = 0}_{\text{element of } h(z)}, \qquad \forall (i, j) \in \overline{\Lambda}.$

POP find
$$
\mathbf{z} \coloneqq [x_2, \dots, x_n, \mathbf{y}^{\mathrm{T}}]^{\mathrm{T}} \in \mathbb{R}^{n+m-1}
$$

\ns.t.
$$
x_1 = 1,
$$

\n
$$
x_i y_j - A_{ij} = 0, \quad (i, j) \in \overline{\Lambda}.
$$

POP for Rank‐one Matrix Completion

Finally, we have

$$
\min_{\boldsymbol{z}\in\mathbb{R}^n} \quad {\left\{\boldsymbol{u}_2\left(\boldsymbol{z}\right)\right\}}^{\mathrm{T}} Q \boldsymbol{u}_2\left(\boldsymbol{z}\right)\\ \text{s.t.} \quad \boldsymbol{h}(\boldsymbol{z}) = 0. \tag{P}
$$

- Introduce $Q \in \mathbb{S}^N$ on objective function.
- Focus
	- not on solving the rank‐one matrix completion,
	- but on the tightness for problems in which it is hidden.

 $\sqrt{\mathsf{Assumption}}$ Solution exists and it is unique.

POP for Rank‐one Matrix Completion

Finally, we have

$$
\min_{\boldsymbol{z}\in\mathbb{R}^n} \quad {\left\{\boldsymbol{u}_2\left(\boldsymbol{z}\right)\right\}}^{\mathrm{T}} Q \boldsymbol{u}_2\left(\boldsymbol{z}\right)\\ \text{s.t.} \quad Ch(\boldsymbol{z})=0. \tag{P}
$$

- Introduce $Q \in \mathbb{S}^N$ on objective function.
- Focus
	- not on solving the rank‐one matrix completion,
	- but on the tightness for problems in which it is hidden.

 $\sqrt{\mathsf{Assumption}}$ Solution exists and it is unique.

Example of using *C*

$$
\begin{array}{ll}\n\min_{\mathbf{z}\in\mathbb{R}^5} & \{ \mathbf{u}_2(\mathbf{z}) \}^{\mathrm{T}} Q \mathbf{u}_2(\mathbf{z}) \\
\text{s.t.} & y_1 - \frac{3}{2} y_2 - \frac{5}{2} = 0, \qquad 5y_2 - 2x_3 y_2 + 3 = 0, \\
10y_2 + x_2 y_1 + 5 = 0, \quad -\frac{1}{2} y_1 + y_2 + \frac{1}{5} x_2 y_1 + x_2 y_3 - \frac{5}{2} = 0, \\
x_3y_2 - 9 = 0.\n\end{array}
$$

$$
\iff \begin{bmatrix} 1 & -\frac{3}{2} & 0 & 0 & 0 \\ 5 & 5 & 0 & 0 & -2 \\ 0 & 10 & 1 & 0 & 0 \\ -\frac{1}{2} & 1 & \frac{1}{5} & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 - 7 \\ y_2 - 3 \\ x_2y_1 + 35 \\ x_2y_3 - 10 \\ x_3y_2 - 9 \end{bmatrix} = \mathbf{0}
$$

- Hard to apply privious approach to this problem
- Hard to find C and $h(z)$

Outline

- 1. Introduction
- 2. POP Formulation of Matrix Completion
- 3. High‐rank matrix *Q* and tightness
	- Sum‐of‐squares relaxation
	- High‐rank solution that the relaxation is tight
	- Existence of *Q* for tight
- 4. Algorithms
	- Program to find *Q*
	- Numerical experiment
- 5. Summary

Sum‐of‐Square Polynomial (SOS Polynomial)

A polynomial *p*(*z*) is an sum‐of‐square (SOS) polynomial if

$$
p(\boldsymbol{z}) = \sum_{i=1}^r \left\{ q_i(\boldsymbol{z}) \right\}^2
$$

for some polynomials $q_1(z), \ldots, q_r(z)$.

• $\Sigma_d[z] := \{$ SOS polynomials $p(z)$ | degree-*d* or less }

Matrix representation of SOS polynomials

 $p(\boldsymbol{z})$ is a degree-2 d SOS polynomial $\iff \exists W \in \mathbb{S}_{+}^{{n+d \choose d}}$ satisfying

$$
p(\boldsymbol{z}) = \boldsymbol{u}_d(\boldsymbol{z})^\mathrm{T} W \boldsymbol{u}_d(\boldsymbol{z})
$$

for $u_d(z)$ consisting of all monomials of degree- d or less.

Equivalent problem with squared constraints

Start from (P) with $C = I_K$:

$$
\min_{\boldsymbol{z}\in\mathbb{R}^n} \quad {\boldsymbol{u}_2(\boldsymbol{z})}^{\mathrm{T}} Q \boldsymbol{u}_2(\boldsymbol{z})
$$
\n
$$
\text{s.t.} \quad h_k(\boldsymbol{z}) = 0, \quad k \in \{1, \ldots, K\}. \tag{P}
$$

Equivalent problem with squared constraints

Start from (P) with $C = I_K$:

$$
\min_{\boldsymbol{z}\in\mathbb{R}^n} \quad {\left\{\boldsymbol{u}_2\left(\boldsymbol{z}\right)\right\}}^{\mathrm{T}} Q \boldsymbol{u}_2\left(\boldsymbol{z}\right) \text{s.t.} \quad h_k\left(\boldsymbol{z}\right) = 0, \quad k \in \{1, \ldots, K\}. \tag{P}
$$

$$
\downarrow
$$
\n
$$
\min_{\mathbf{z} \in \mathbb{R}^n} \{ \mathbf{u}_2(\mathbf{z}) \}^{\mathrm{T}} Q \mathbf{u}_2(\mathbf{z})
$$
\n
$$
\text{s.t. } \{ h_k(\mathbf{z}) \}^2 \leq 0, \quad k \in \{1, \dots, K\}. \tag{P2}
$$

 $\overline{1}$

Differences:

- LHS of $h_k(z) = 0$ becomes an SOS polynomials
- Equality \rightarrow Inequality

Level‐2 Sum‐of‐squares (SOS) Relaxation

$$
\min_{\boldsymbol{z}\in\mathbb{R}^n} \quad {\boldsymbol{u}_2(\boldsymbol{z})}^{\mathrm{T}} Q \boldsymbol{u}_2(\boldsymbol{z})
$$
\n
$$
\text{s.t.} \quad {\boldsymbol{h}_k(\boldsymbol{z})}^2 \leq 0, \quad k \in \{1, \ldots, K\}. \tag{P2}
$$

$$
\downarrow
$$
\n
$$
\lim_{\rho,\lambda} \rho \qquad \qquad \boxed{=: q(z;\rho,\lambda)}
$$
\n
$$
\text{s.t.} \quad (\boldsymbol{u}_2)^{\mathrm{T}} Q \boldsymbol{u}_2 - \rho + \sum_{k=1}^{K} h_k(z)^2 \lambda_k(z) \ll \Sigma_4[z],
$$
\n
$$
\lambda_k(z) \in \Sigma_{4-2d_k}[z], \quad k \in \{1, \ldots, K\}.
$$

where $\Sigma_d[z] := \{$ SOS polynomials $p(z)$ | degree *d* or less } d_k := degree of $h_k(z)$

Domain space was reduced thanks to $h_k(z)^2 \leq 0$.

Ranks of Two Optimal Solutions

Let *M[∗]* be *a solution of Lasserre's relaxation*, and *W[∗]* be the matrix representation of

$$
\left(\boldsymbol{u}_2\right)^{\mathrm{T}}\!Q\boldsymbol{u}_2-\rho^*+\sum_{k=1}^{K}h_k(\boldsymbol{z})^2\lambda_k^*(\boldsymbol{z})
$$

of *a solution of SOS relaxation*.

Complementarity Condition

There is a pair of solutions (*M[∗] , W[∗]*) satisfying

 $M^*W^* = O$ under the strong duality.

For any *W[∗]* , there exists *M[∗]* satisfying Sylvester rank inequality:

$$
rank(M^*) + rank(W^*) \le N - \underbrace{rank(M^*W^*)}_{=0}
$$

$$
= N.
$$
 13

Sufficient condition of tightness

The SOS relaxation is tight

⇐= *∃* an optimal solution *q*(*z*; *ρ ∗ ,λ ∗*) of the SOS relaxation satisfying

 $rank W^* > N - 1.$

Proof There exists an optimal solution *M[∗]* of the Lasserre's relaxation:

$$
rank(M^*) \le N - rank(W^*)
$$

$$
\le N - (N - 1) = 1
$$

It follows from $M^*_{NN} = 1$ that $\text{rank}(M^*) = 1$.

What matrix *Q* must be chosen for rank $W^* \geq N - 1$?

Existence of *Q* **for tight**

Proposition

There exist Q and $\Gamma \in \mathbb{S}^N_+$ satisfying

$$
(\boldsymbol{u}_2)^{\mathrm{T}} Q \boldsymbol{u}_2 - (\boldsymbol{u}_2)_0^{\mathrm{T}} Q (\boldsymbol{u}_2)_0 = (\boldsymbol{u}_2)^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{u}_2
$$

$$
\operatorname{rank} Q = \operatorname{rank} \boldsymbol{\Gamma} = N - 1
$$

where $(u_2)_0 := u_2(z_0)$ and z_0 is a solution of (P) .

∴ for any $\rho \in \mathbb{R}$ and $\lambda_k(z) \in \Sigma_{4-2d_k}[z]$ being a feasible solution, SOS polynomial:

$$
q(\mathbf{z}; \rho, \boldsymbol{\lambda}) = \begin{bmatrix} (\boldsymbol{u}_2)^{\mathrm{T}} Q \boldsymbol{u}_2 - \rho & + \sum_{k=1}^{K} h_k(\boldsymbol{z})^2 \lambda_k(\boldsymbol{z}) \\ \text{SOS poly.} \\ \text{rank } \Gamma = N - 1 \end{bmatrix}.
$$

$$
\boxed{\qquad \qquad \text{rank } W = N - 1}
$$

For *i*th element of u_2 , define

$$
Q^i := \begin{bmatrix} \boxed{[(\boldsymbol{u}_2)_0]_i^2} & \mathbf{0}^{\mathrm{T}} & -[(\boldsymbol{u}_2)_0]_i & \mathbf{0}^{\mathrm{T}} \\ \hline \mathbf{0} & O & & \\ -[(\boldsymbol{u}_2)_0]_i & & 1 & \\ \mathbf{0} & & & \mathrm{O} \end{bmatrix} \in \mathbb{S}^N.
$$

$$
\implies \text{rank}(Q^i) = 1, \quad (\boldsymbol{u}_2)_0^{\mathrm{T}} Q^i (\boldsymbol{u}_2)_0 = 0.
$$

Focus on $\overline{Q}\coloneqq\sum_{k=2}^N Q^i$, then

\n- ∘ rank
$$
(\overline{Q}) = N - 1
$$
.
\n- ∘ $(\boldsymbol{u}_2)^T \overline{Q} \boldsymbol{u}_2 - (\boldsymbol{u}_2)_0^T \overline{Q} (\boldsymbol{u}_2)_0$ is a SOS polynomial.
\n

◦ Q is sparse. (called an arrowhead matrix)

Tightness Conditions

Remark 4.5²

There exists coefficient matrix *Q* on the objective function such that the SOS relaxation of (P^2) with $C=I_K$ is tight.

 \overline{Q} is one choice that satisfies the remark.

 $\sqrt{\frac{1}{2}}$

Generalization of *C* **to nonsingular**

The same discussion and the existence of *Q* hold when $C^{\mathrm{T}}C$ is nonsingular.

Outline

- 1. Introduction
- 2. POP Formulation of Matrix Completion
- 3. High‐rank matrix *Q* and tightness
	- Sum‐of‐squares relaxation
	- High‐rank solution that the relaxation is tight
	- Existence of *Q* for tight
- 4. Algorithms
	- Program to find *Q*
	- Numerical experiment
- 5. Summary

Problems

- $(u_2)_0$ depends on the true solution z_0
- so does *Q*

$$
\overline{Q} = \begin{bmatrix} \sum_{r=1}^{N} \left[(\boldsymbol{u}_2)_0 \right]_r^2 & - \left[(\boldsymbol{u}_2)_0 \right]_2 & \cdots & - \left[(\boldsymbol{u}_2)_0 \right]_N \\ - \left[(\boldsymbol{u}_2)_0 \right]_2 & 1 & & \\ \vdots & & & \ddots & \\ - \left[(\boldsymbol{u}_2)_0 \right]_N & & & 1 \end{bmatrix}
$$

find
$$
Q \in \mathbb{S}_+^N
$$
, $U \in \mathbb{S}_+^{KN}$
\n
\n
$$
\text{s.t. } (u_2)^{\mathrm{T}}Qu_2 = (h(z) \otimes u_2)^{\mathrm{T}}U(h(z) \otimes u_2),
$$
\n
$$
Q_{ii} = 1, \quad i \in \{2, ..., N\},
$$
\n
$$
Q_{ij} = 0, \quad (i, j) \in \{2, ..., N\} \times \{2, ..., N\}, \quad i \neq j,
$$
\n
$$
(S)
$$

- The first row and column are recovered from $h(z)$.
- The solution *Q[∗]* must be an arrowhead matrix.
	- *◦* Bottom‐right block must be the identity matrix.

Numerical Experiment

Objective

To evaluate the accuracy of output *Q* from (*S*1)

Environment

- Intel Core i9‐12900K / 64GB
- Julia 1.9.2 / Mosek 10.0.2 on Windows 11

Error of estimation

Let z_0 be a true solution. The error of z^* returned by (\mathscr{S}_1) is

$$
\text{Er}(\bm{z}^*) \coloneqq \frac{\|\bm{z}^* - \bm{z}_0\|_2}{\|\bm{z}_0\|_2}
$$

Generated Instances

Assumption: $n + m = 10$

10 random bipartite graphs G_1, \ldots, G_{10}

10 random rank‐1 matrices $\boldsymbol{x}_0(\boldsymbol{y}_0)^\mathrm{T}, \dots$

=*⇒* 100 instances

• Each edge corresponds to a hint of rank‐one completion.

$$
h(z) = \left[x_i y_j - (x_0)_i (y_0)_j\right]_{(i,j) \in E(\mathcal{G}_p)} = 0
$$

×

- Er(*z ∗*) can be evaluated because the true solution is $\boldsymbol{z}_0 \coloneqq [(x_0)_2,\ldots,(x_0)_m,(\boldsymbol{y}_0)^{\rm T}]^{\rm T}.$
- Random nonsingular matrices $C \in \mathbb{R}^{9 \times 9}$ in $Ch(z)$.

Results: Error of Constructed *Q*

- $\circ~$ Exact solution of (P^2) can be recovered when $C = I.$
- *◦* Errors (and times) for nonsingular *C^k* is larger than *C* = *I*

Conclusion

Summary

- We consider (*P*) in which rank‐one matrix completion is hidden.
- Sparse and high‐rank matrix *Q* controls the tightness of SOS relaxation.
- We provide an algorithm to find such a matrix *Q*.

Future works

- More detailed conditions of *Q* for tight
- Applying to rank‐one tensor completion

Thank you for your attention! More information is available: arXiv:2311.14882.

 \circ *y*₁ = 7 from the edge (1, 1),

-
-
-
- \circ $y_1 = 7$ from the edge $(1, 1)$, \circ $x_2 = -5$ from the edge $(2, 1)$, *◦ y*³ = *−*2 from the edge (2*,* 3),

- \circ $y_1 = 7$ from the edge $(1, 1)$,
- \circ $x_2 = -5$ from the edge $(2, 1)$,
-

 \circ $y_2 = 3$ and $x_3 = 3$ from the others.

*◦ y*³ = *−*2 from the edge (2*,* 3),

Overview of Algorithm

- 1: Solve (\mathscr{S}_1) and obtain a solution $(Q^*,U^*).$
- 2: $f_{\text{sum}} \leftarrow (u_2)^{\text{T}} Q^* u_2.$
- β : Solve ($\mathscr{S}_2(f_{\mathrm{sum}}))$ using f_{sum} and obtain a solution $(\rho^*,\boldsymbol{\lambda}^*).$
- 4: Find the Gram matrix $\Gamma \in \mathbb{S}^N$ such that

$$
(u_2)^{\mathrm{T}}\Gamma u_2 = f_{\mathrm{sum}} - \rho^* + \sum_{k=1}^K \{h_k(z)\}^2 \lambda_k^*.
$$

- 5: Find a vector $\boldsymbol{u}_2^*\in \mathbb{R}^N$ in the null space of $\Gamma.$
- 6: $\bm{z}^* \leftarrow \frac{1}{(\bm{u}_2^*)_1}[(\bm{u}_2^*)_2,(\bm{u}_2^*)_3,\ldots,(\bm{u}_2^*)_{s+1}]^\mathrm{T}$ and return $\bm{z}^*.$

$$
f_{\text{sum}}(z) \coloneqq (\boldsymbol{u}_2)^{\text{T}} Q^* \boldsymbol{u}_2
$$

$$
\max_{\rho,\lambda,\Delta_1,\ldots,\Delta_K} \rho
$$
\n
$$
\text{s.t.} \quad f_{\text{sum}}(z) - \rho + \sum_{k=1}^K h_k(z)^2 \lambda_k(z) \in \Sigma_4[z]
$$
\n
$$
\lambda_k(z) = \mathbf{u}_1 \Delta_k \mathbf{u}_1 \quad (k = 1,\ldots,K)
$$
\n
$$
\mu I - \Delta_k \succeq O \quad (k = 1,\ldots,K)
$$
\n
$$
\rho \in \mathbb{R}, \ \lambda_k(z) \in \Sigma_{4-2d_k}[z], \ \Delta_k \in \mathbb{S}_+^{m+n} \quad (k = 1,\ldots,K).
$$
\n
$$
(\mathscr{S}_2(f_{\text{sum}}))
$$

It becomes a problem in which all equality constraints consist of linear combination of *h*(*z*)

Example

$$
\begin{cases}\n z_4 - 1.5z_5 - 2.5 = 0 \\
 5z_5 - 2z_3z_5 + 3 = 0 \\
 10z_5 + z_2z_4 + 5 = 0 \\
 -0.5z_4 + z_5 + 0.2z_2z_4 + z_2z_6 - 2.5 = 0 \\
 z_3z_5 - 9 = 0\n\end{cases}
$$

In fact,

$$
-0.5z_4 + z_5 + 0.2z_2z_4 + z_2z_6 - 2.5
$$

= -0.5(z₄ - 7) + (z₅ - 3) + 0.2(z₂z₄ + 35) + (z₂z₆ - 10)
= -0.5 h₁(**z**) + h₂(**z**) + 0.2 h₃(**z**) + h₄(**z**)
combination of h₁,...,h₅

Experiment

Experiment 1: Applying to Example Problem

Second Stage (*S*2(*f*sum)) max *ρ,λ,*∆1*,*∆² *ρ* s.t. $f_{\text{sum}} - \rho + (y_1 - 7)^2 \lambda_1 + (y_2 - 3)^2 \lambda_2 + (x_2 y_1 + 35)^2 \lambda_3$ +(x_2y_3 − 10)² λ_4 + (x_3y_2 − 9)² λ_5 ∈ $\Sigma_4[z]$ $\lambda_k(z) = u_1$ ^T $\Delta_k u_1$, $k = 1, 2$ $\Delta_k \in \mathbb{S}^{n+m}_+$, $\mu I - \Delta_k \succeq O$, $k = 1, 2$ $\rho \in \mathbb{R}, \ \lambda_3, \lambda_4, \lambda_5 \in [0, \mu]$

Experiment 2: Caluculation Time

Lagrange Function for (*P* 2)

Review: Problem with Squared Constraints

$$
\min_{h_0(z)} h_0(z) \n\text{s.t.} \quad -h_k(z)^2 \ge 0, \quad k \in \{1, ..., K\}. \tag{P2}
$$

Lagrange function

For $z \in \mathbb{R}^{m+n-1}$ and $\lambda_k(z) \in \Sigma[z]$,

$$
\mathcal{L}(\boldsymbol{z}, \boldsymbol{\lambda}) \coloneqq h_0(\boldsymbol{\lambda}) + \sum_{k=1}^K \lambda_k(\boldsymbol{z}) h_k(\boldsymbol{z})^2
$$

Let
$$
\mathcal{L}^*(\lambda) \coloneqq \inf \{ \mathcal{L}(z, \lambda) \mid z \in \mathbb{R}^{m+n-1} \}.
$$

Lagrange Dual Problem

 \max $\mathcal{L}^*(\lambda)$ s.t. $\lambda \in (\Sigma[\boldsymbol{z}])^K$.

• (Σ[*z*]) → (Σ2*d−*2*d^k* [*z*]): Subproblem for Level‐*d*

Let
$$
\mathcal{L}^*(\lambda) \coloneqq \inf \{ \mathcal{L}(z, \lambda) \mid z \in \mathbb{R}^{m+n-1} \}.
$$

Lagrange Dual Problem

$$
\max_{\mathbf{S}.\mathbf{t}} \quad \mathcal{L}^*(\boldsymbol{\lambda}) \\
\text{s.t.} \quad \boldsymbol{\lambda} \in \left(\Sigma[\boldsymbol{z}]_{2d-2d_k}\right)^K.
$$

 \bullet ($\Sigma[z])$ \rightarrow ($\Sigma_{2d-2d_k}[z]$): Subproblem for Level- d

Table 1: Bipartite graphs.

Graph Formulation for Γ

Chain Structure and Unique Completion

Fact

The graph is connected² \iff Rank-one matrix completion is unique

- *x*¹ *−→ y*¹ *−→ x*² *−→ y*³
- *x*¹ *−→ y*² *−→ x*³

²a path exists between any two vertices

If the graph is DISconnected

Solution

- 1 Divide the problem to problems of each connected component
- 2 Reorder numbers of indices on each problem
- 3 Solve them
- 4 Overlap them while comparing corresponding elements