High-rank Solution of Sum-of-Squares Relaxations for Exact Matrix Completion

<u>Godai Azuma</u>¹ Sunyoung Kim² Makoto Yamashita³ ¹Aoyama Gakuin University ²Ewha Womans University ³Tokyo Institute of Technology

ISMP 2024, FB36 (July 26, 2024)

This work was supported by JSPS KAKENHI 24K20738, JP22KJ1307 and JP20H04145 NRF 2021-R1A2C1003810

Consider a problem in which a matrix completion problem is hidden.

$$\min_{\boldsymbol{z} \in \mathbb{R}^n} \quad \{\boldsymbol{u}_2(\boldsymbol{z})\}^{\mathrm{T}} Q \boldsymbol{u}_2(\boldsymbol{z})$$
s.t. $\boldsymbol{h}(\boldsymbol{z}) = 0.$

$$(P)$$

- Polynomial optimization problem (POP) of z
- h(z) is a vector of polynomials of z:

$$\boldsymbol{h}(\boldsymbol{z}) = [z_i z_j - A_{ij}]_{(i,j) \in \Lambda}, \quad A_{ij} \text{ is constant},$$
$$\boldsymbol{u}_2(\boldsymbol{z}) = [1, z_1, \dots, z_n, z_1^2, z_1 z_2, \dots, z_n^2]^{\mathrm{T}} \in \mathbb{R}^N \coloneqq \mathbb{R}^{\binom{n+2}{2}}.$$

Consider a problem in which a matrix completion problem is hidden.

$$\min_{\mathbf{z} \in \mathbb{R}^n} \quad \{ \boldsymbol{u}_2(\boldsymbol{z}) \}^{\mathrm{T}} Q \boldsymbol{u}_2(\boldsymbol{z})$$
s.t. $\boldsymbol{C} \boldsymbol{h}(\boldsymbol{z}) = 0.$

$$(P)$$

- Polynomial optimization problem (POP) of z
- h(z) is a vector of polynomials of z:

$$\boldsymbol{h}(\boldsymbol{z}) = [z_i z_j - A_{ij}]_{(i,j) \in \Lambda}, \quad A_{ij} \text{ is constant},$$
$$\boldsymbol{u}_2(\boldsymbol{z}) = [1, z_1, \dots, z_n, z_1^2, z_1 z_2, \dots, z_n^2]^{\mathrm{T}} \in \mathbb{R}^N \coloneqq \mathbb{R}^{\binom{n+2}{2}}.$$

• For C = I, the POP formulation for the rank-one matrix completion

Relaxations and Tightness

Theorem 1¹

If $Q = I_N$ and $C = I_K$, then level-2 Lasserre's relaxation is <u>tight</u>. (Optimal values of it and (P) coincide)

¹A. Cosse, L. Demanet. "Stable Rank-One Matrix Completion is Solved by the Level 2 Lasserre Relaxation", Foundations of Computational Mathematics, 21, 891–940, 2021.

Question

- Tightness of relaxations hold without $Q = I_N$ and $C = I_K$?
- If so, how large class of problems?

 \implies Classify exactly solvable problems in nonconvex problems

This talk

- High-rank Q preserving tightness
- In particular, $C = I_K$

Sparsity structure Q will be used to show high-rank

Outline

1. Introduction

- 2. POP Formulation of Matrix Completion
- 3. High-rank matrix Q and tightness
 - Sum-of-squares relaxation
 - High-rank solution that the relaxation is tight
 - Existence of Q for tight
- 4. Algorithms
 - Program to find Q
 - Numerical experiment
- 5. Summary

Rank-one Matrix Completion Problem

Recovering a rank-1 matrix from partially given elements.

Intuitive formulation:

find $X \in \mathbb{R}^{n \times m}$ s.t. $\operatorname{rank}(X) = 1$, $X_{ij} - A_{ij} = 0$, $(i, j) \in \overline{\Lambda}$. ($\overline{\Lambda}$: index set of given elem) given (i, j)th element Example: $\overline{\Lambda} = \{(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)\}$ To make polynomial optimization (POP),

- $\circ \,$ introduce $oldsymbol{x} \in \mathbb{R}^n$ and $oldsymbol{y} \in \mathbb{R}^m$
- $\circ~{\rm replace}~X~{\rm by}~{\boldsymbol x}{\boldsymbol y}^{\rm T}$

Then,
$$X_{ij} - A_{ij} = 0 \iff \underbrace{x_i y_j - A_{ij} = 0}_{\text{element of } h(z)}, \quad \forall (i, j) \in \overline{\Lambda}.$$

POP find
$$\boldsymbol{z} \coloneqq [x_2, \dots, x_n, \boldsymbol{y}^{\mathrm{T}}]^{\mathrm{T}} \in \mathbb{R}^{n+m-1}$$

s.t. $\boldsymbol{x}_1 = 1,$
 $x_i y_j - A_{ij} = 0, \quad (i, j) \in \overline{\Lambda}.$

Finally, we have

$$\min_{\boldsymbol{z} \in \mathbb{R}^n} \quad \{\boldsymbol{u}_2(\boldsymbol{z})\}^{\mathrm{T}} Q \boldsymbol{u}_2(\boldsymbol{z})$$
s.t. $\boldsymbol{h}(\boldsymbol{z}) = 0.$

$$(P)$$

- Introduce $Q \in \mathbb{S}^N$ on objective function.
- Focus
 - not on solving the rank-one matrix completion,
 - but on the tightness for problems in which it is hidden.

Assumption Solution exists and it is unique.

Finally, we have

$$\min_{\boldsymbol{z} \in \mathbb{R}^n} \quad \{\boldsymbol{u}_2(\boldsymbol{z})\}^{\mathrm{T}} Q \boldsymbol{u}_2(\boldsymbol{z})$$
s.t. $\boldsymbol{C} \boldsymbol{h}(\boldsymbol{z}) = 0.$

$$(P)$$

- Introduce $Q \in \mathbb{S}^N$ on objective function.
- Focus
 - not on solving the rank-one matrix completion,
 - but on the tightness for problems in which it is hidden.

Assumption Solution exists and it is unique.

Example of using C

$$\min_{\boldsymbol{z} \in \mathbb{R}^5} \quad \{\boldsymbol{u}_2(\boldsymbol{z})\}^{\mathrm{T}} Q \boldsymbol{u}_2(\boldsymbol{z}) \\ \text{s.t.} \quad y_1 - \frac{3}{2} y_2 - \frac{5}{2} = 0, \qquad 5y_2 - 2x_3 y_2 + 3 = 0, \\ 10y_2 + x_2 y_1 + 5 = 0, \quad -\frac{1}{2} y_1 + y_2 + \frac{1}{5} x_2 y_1 + x_2 y_3 - \frac{5}{2} = 0, \\ x_3 y_2 - 9 = 0. \end{aligned}$$

$$\iff \underbrace{ \begin{bmatrix} 1 & -\frac{3}{2} & 0 & 0 & 0 \\ 5 & 5 & 0 & 0 & -2 \\ 0 & 10 & 1 & 0 & 0 \\ -\frac{1}{2} & 1 & \frac{1}{5} & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}}_{C} \underbrace{ \begin{bmatrix} y_1 - 7 \\ y_2 - 3 \\ x_2y_1 + 35 \\ x_2y_3 - 10 \\ x_3y_2 - 9 \end{bmatrix}}_{\mathbf{h}(\mathbf{z})} = \mathbf{0}$$

- Hard to apply privious approach to this problem
- Hard to find C and h(z)

Outline

- 1. Introduction
- 2. POP Formulation of Matrix Completion
- 3. High-rank matrix Q and tightness
 - Sum-of-squares relaxation
 - High-rank solution that the relaxation is tight
 - Existence of Q for tight
- 4. Algorithms
 - Program to find Q
 - Numerical experiment
- 5. Summary

Sum-of-Square Polynomial (SOS Polynomial)

A polynomial p(z) is an sum-of-square (SOS) polynomial if

$$p(\boldsymbol{z}) = \sum_{i=1}^{r} \{q_i(\boldsymbol{z})\}^2$$

for some polynomials $q_1(z), \ldots, q_r(z)$.

• $\Sigma_d[\mathbf{z}] := \{ \text{ SOS polynomials } p(\mathbf{z}) \mid \text{degree-}d \text{ or less } \}$

Matrix representation of SOS polynomials

p(z) is a degree-2d SOS polynomial $\iff \exists W \in \mathbb{S}^{\binom{n+d}{d}}_+$ satisfying

$$p(\boldsymbol{z}) = \boldsymbol{u}_d(\boldsymbol{z})^{\mathrm{T}} W \boldsymbol{u}_d(\boldsymbol{z})$$

for $u_d(z)$ consisting of all monomials of degree-d or less.

Equivalent problem with squared constraints

Start from (P) with $C = I_K$:

$$\min_{\boldsymbol{z} \in \mathbb{R}^{n}} \quad \{\boldsymbol{u}_{2}(\boldsymbol{z})\}^{\mathrm{T}} Q \boldsymbol{u}_{2}(\boldsymbol{z})$$
s.t. $h_{k}(\boldsymbol{z}) = 0, \quad k \in \{1, \dots, K\}.$

$$(P)$$

Equivalent problem with squared constraints

Start from (P) with $C = I_K$:

$$\min_{\boldsymbol{z} \in \mathbb{R}^n} \quad \{\boldsymbol{u}_2(\boldsymbol{z})\}^{\mathrm{T}} Q \boldsymbol{u}_2(\boldsymbol{z})$$
s.t. $h_k(\boldsymbol{z}) = 0, \quad k \in \{1, \dots, K\}.$

$$(P)$$

$$\min_{\boldsymbol{z} \in \mathbb{R}^{n}} \{\boldsymbol{u}_{2}(\boldsymbol{z})\}^{\mathrm{T}} Q \boldsymbol{u}_{2}(\boldsymbol{z})$$
s.t. $\{\boldsymbol{h}_{\boldsymbol{k}}(\boldsymbol{z})\}^{2} \leq 0, \quad \boldsymbol{k} \in \{1, \dots, K\}.$

$$(P^{2})$$

Differences:

- LHS of $h_k(z) = 0$ becomes an SOS polynomials
- Equality → Inequality

Level-2 Sum-of-squares (SOS) Relaxation

$$\min_{\boldsymbol{z} \in \mathbb{R}^{n}} \quad \{\boldsymbol{u}_{2}(\boldsymbol{z})\}^{\mathrm{T}} Q \boldsymbol{u}_{2}(\boldsymbol{z})$$
s.t.
$$\{\boldsymbol{h}_{k}(\boldsymbol{z})\}^{2} \leq 0, \quad k \in \{1, \dots, K\}.$$

$$(P^{2})$$

where

$$\Sigma_d[\mathbf{z}] := \{ \text{ SOS polynomials } p(\mathbf{z}) \mid \text{degree } d \text{ or less } \}$$

$$d_k := \text{degree of } h_k(\mathbf{z})$$

Domain space was reduced thanks to $h_k(z)^2 \leq 0$.

Ranks of Two Optimal Solutions

Let M^* be <u>a solution of Lasserre's relaxation</u>, and W^* be the matrix representation of

$$(\boldsymbol{u}_2)^{\mathrm{T}} Q \boldsymbol{u}_2 - \rho^* + \sum_{k=1}^{K} h_k(\boldsymbol{z})^2 \lambda_k^*(\boldsymbol{z})$$

of a solution of SOS relaxation.

Complementarity Condition

There is a pair of solutions (M^*, W^*) satisfying

 $M^*W^* = O$ under the strong duality.

For any W^* , there exists M^* satisfying Sylvester rank inequality:

$$\operatorname{rank}(M^*) + \operatorname{rank}(W^*) \le N - \underbrace{\operatorname{rank}(M^*W^*)}_{=0}$$
$$= N.$$

Sufficient condition of tightness

The SOS relaxation is tight

 $\iff \exists$ an optimal solution $q({\bm z};\rho^*,{\bm \lambda}^*)$ of the SOS relaxation satisfying

 $\operatorname{rank} W^* \ge N - 1.$

<u>**Proof**</u> There exists an optimal solution M^* of the Lasserre's relaxation:

$$\operatorname{rank}(M^*) \le N - \operatorname{rank}(W^*)$$
$$\le N - (N - 1) = 1$$

It follows from $M_{NN}^* = 1$ that $\operatorname{rank}(M^*) = 1$.

What matrix Q must be chosen for rank $W^* \ge N - 1$?

Existence of Q for tight

Proposition

There exist Q and $\Gamma \in \mathbb{S}^N_+$ satisfying

$$\begin{aligned} \left(\boldsymbol{u}_{2}\right)^{\mathrm{T}} Q \boldsymbol{u}_{2} - \left(\boldsymbol{u}_{2}\right)_{0}^{\mathrm{T}} Q \left(\boldsymbol{u}_{2}\right)_{0} = \left(\boldsymbol{u}_{2}\right)^{\mathrm{T}} \Gamma \boldsymbol{u}_{2} \\ \mathrm{rank} \, \boldsymbol{Q} = \mathrm{rank} \, \Gamma = N - 1 \end{aligned}$$

where $(u_2)_0 \coloneqq u_2(z_0)$ and z_0 is a solution of (P).

 \therefore for any $\rho \in \mathbb{R}$ and $\lambda_k(z) \in \Sigma_{4-2d_k}[z]$ being a feasible solution, SOS polynomial:

$$q(\boldsymbol{z}; \rho, \boldsymbol{\lambda}) = (\boldsymbol{u}_2)^{\mathrm{T}} Q \boldsymbol{u}_2 - \rho + \sum_{k=1}^{K} h_k(\boldsymbol{z})^2 \lambda_k(\boldsymbol{z}) .$$

SOS poly.
rank $\Gamma = N - 1$
SOS poly.
rank $W = N - 1$

For *i*th element of u_2 , define

$$Q^{i} \coloneqq \bigcup_{i} \begin{bmatrix} [(u_{2})_{0}]_{i}^{2} & \mathbf{0}^{\mathrm{T}} & -[(u_{2})_{0}]_{i} & \mathbf{0}^{\mathrm{T}} \\ \mathbf{0} & O & & \\ -[(u_{2})_{0}]_{i} & 1 & \\ \mathbf{0} & & O \end{bmatrix} \in \mathbb{S}^{N}.$$
$$\implies \operatorname{rank}(Q^{i}) = 1, \quad (u_{2})_{0}^{\mathrm{T}} Q^{i} (u_{2})_{0} = 0.$$

Focus on $\overline{Q}\coloneqq \sum_{k=2}^N Q^i$, then

 $\circ \operatorname{rank}\left(\overline{Q}\right) = N - 1.$ $\circ (\boldsymbol{u}_2)^{\mathrm{T}} \overline{Q} \boldsymbol{u}_2 - (\boldsymbol{u}_2)_0^{\mathrm{T}} \overline{Q} (\boldsymbol{u}_2)_0 \text{ is a SOS polynomial.}$

 $\circ \overline{Q}$ is sparse. (called an arrowhead matrix)

Remark 4.5²

There exists coefficient matrix Q on the objective function such that the SOS relaxation of (P^2) with $C = I_K$ is tight.

 \overline{Q} is one choice that satisfies the remark.

Generalization of C to nonsingular

The same discussion and the existence of Q hold when $C^{T}C$ is nonsingular.

Outline

- 1. Introduction
- 2. POP Formulation of Matrix Completion
- 3. High-rank matrix Q and tightness
 - Sum-of-squares relaxation
 - High-rank solution that the relaxation is tight
 - Existence of Q for tight
- 4. Algorithms
 - Program to find ${\boldsymbol{Q}}$
 - Numerical experiment
- 5. Summary

Problems

- $(\boldsymbol{u}_2)_0$ depends on the true solution \boldsymbol{z}_0
- so does \overline{Q}

$$\overline{Q} = \begin{bmatrix} \sum_{r=1}^{N} [(\boldsymbol{u}_2)_0]_r^2 & -[(\boldsymbol{u}_2)_0]_2 & \cdots & -[(\boldsymbol{u}_2)_0]_N \\ -[(\boldsymbol{u}_2)_0]_2 & 1 & \\ \vdots & \ddots & \\ -[(\boldsymbol{u}_2)_0]_N & 1 \end{bmatrix}$$

find
$$Q \in \mathbb{S}_{+}^{N}, U \in \mathbb{S}_{+}^{KN}$$

s.t. $(\boldsymbol{u}_{2})^{\mathrm{T}}Q\boldsymbol{u}_{2} = (\boldsymbol{h}(\boldsymbol{z}) \otimes \boldsymbol{u}_{2})^{\mathrm{T}}U(\boldsymbol{h}(\boldsymbol{z}) \otimes \boldsymbol{u}_{2}),$
 $Q_{ii} = 1, \quad i \in \{2, \dots, N\},$
 $Q_{ij} = 0, \quad (i,j) \in \{2, \dots, N\} \times \{2, \dots, N\}, \quad i \neq j,$
(S1)

- The first row and column are recovered from h(z).
- The solution Q^* must be an arrowhead matrix.
 - Bottom-right block must be the identity matrix.

Objective

To evaluate the accuracy of output Q from (\mathscr{S}_1)

Environment

- Intel Core i9-12900K / 64GB
- Julia 1.9.2 / Mosek 10.0.2 on Windows 11

Error of estimation

Let \boldsymbol{z}_0 be a true solution. The error of \boldsymbol{z}^* returned by (\mathscr{S}_1) is

$$\operatorname{Er}(\boldsymbol{z}^*) \coloneqq \frac{\|\boldsymbol{z}^* - \boldsymbol{z}_0\|_2}{\|\boldsymbol{z}_0\|_2}$$

Generated Instances

Assumption: n + m = 10

10 random bipartite graphs $\mathcal{G}_1,\ldots,\mathcal{G}_{10}$

10 random rank-1 matrices $oldsymbol{x}_0(oldsymbol{y}_0)^{\mathrm{T}}, \dots$

 \implies 100 instances

• Each edge corresponds to a hint of rank-one completion.

$$\boldsymbol{h}(\boldsymbol{z}) = \left[x_i y_j - (\boldsymbol{x}_0)_i \left(\boldsymbol{y}_0 \right)_j \right]_{(i,j) \in E(\mathcal{G}_p)} = \boldsymbol{0}$$

Х

- $\operatorname{Er}(\boldsymbol{z}^*)$ can be evaluated because the true solution is $\boldsymbol{z}_0 \coloneqq \left[(\boldsymbol{x}_0)_2, \dots, (\boldsymbol{x}_0)_m, (\boldsymbol{y}_0)^{\mathrm{T}} \right]^{\mathrm{T}}$.
- Random nonsingular matrices $C \in \mathbb{R}^{9 \times 9}$ in Ch(z).

Results: Error of Constructed Q

- Exact solution of (P^2) can be recovered when C = I.
- $\circ~$ Errors (and times) for nonsingular C_k is larger than C=I

Summary

- We consider (P) in which rank-one matrix completion is hidden.
- Sparse and high-rank matrix Q controls the tightness of SOS relaxation.
- We provide an algorithm to find such a matrix Q.

Future works

- More detailed conditions of Q for tight
- Applying to rank-one tensor completion

Thank you for your attention! More information is available: arXiv:2311.14882.

• $y_1 = 7$ from the edge (1, 1),

0	$y_1 = 7$	from the edge $(1,1)$,
0	$x_2 = -5$	from the edge $(2,1)$,

- $y_1 = 7$
- $\circ \quad x_2 = -5$
- $\circ y_3 = -2$

from the edge (1, 1), from the edge (2, 1), from the edge (2, 3),

- $y_1 = 7$ from the edge (1, 1),
- $x_2 = -5$ from the edge (2, 1),
- $\circ \quad y_3 = -2$

 \circ $y_2 = 3$ and $x_3 = 3$ from the others.

from the edge (2, 1), from the edge (2, 3),

Input:	constraints	$\boldsymbol{h}(\boldsymbol{z}) = 0$
Output:	estimated solution	$oldsymbol{z}^*$

- 1: Solve (\mathscr{S}_1) and obtain a solution (Q^*, U^*).
- 2: $f_{\text{sum}} \leftarrow (\boldsymbol{u}_2)^{\mathrm{T}} \boldsymbol{Q}^* \boldsymbol{u}_2.$
- 3: Solve ($\mathscr{S}_2(f_{sum})$) using f_{sum} and obtain a solution (ρ^*, λ^*) .
- 4: Find the Gram matrix $\Gamma \in \mathbb{S}^N$ such that

$$(\boldsymbol{u}_2)^{\mathrm{T}} \Gamma \boldsymbol{u}_2 = \boldsymbol{f}_{\mathrm{sum}} - \rho^* + \sum_{k=1}^{K} \{h_k(\boldsymbol{z})\}^2 \lambda_k^*.$$

5: Find a vector $\boldsymbol{u}_2^* \in \mathbb{R}^N$ in the null space of Γ . 6: $\boldsymbol{z}^* \leftarrow \frac{1}{(\boldsymbol{u}_2^*)_1} [(\boldsymbol{u}_2^*)_2, (\boldsymbol{u}_2^*)_3, \dots, (\boldsymbol{u}_2^*)_{s+1}]^T$ and return \boldsymbol{z}^* .

$$f_{\mathrm{sum}}(\boldsymbol{z}) \coloneqq (\boldsymbol{u}_2)^{\mathrm{T}} Q^* \boldsymbol{u}_2$$

$$\begin{array}{l} \max_{\rho, \boldsymbol{\lambda}, \Delta_{1}, \dots, \Delta_{K}} \quad \rho \\ \text{s.t.} \quad f_{\text{sum}}(\boldsymbol{z}) - \rho + \sum_{k=1}^{K} h_{k}(\boldsymbol{z})^{2} \lambda_{k}(\boldsymbol{z}) \in \Sigma_{4}[\boldsymbol{z}] \\ \lambda_{k}(\boldsymbol{z}) = \boldsymbol{u}_{1}^{\text{T}} \Delta_{k} \boldsymbol{u}_{1} \quad (k = 1, \dots, K) \\ \mu I - \Delta_{k} \succeq O \quad (k = 1, \dots, K) \\ \rho \in \mathbb{R}, \; \lambda_{k}(\boldsymbol{z}) \in \Sigma_{4-2d_{k}}[\boldsymbol{z}], \; \Delta_{k} \in \mathbb{S}^{m+n}_{+} \quad (k = 1, \dots, K). \\ (\mathscr{S}_{2}(f_{\text{sum}})) \end{array}$$

It becomes a problem in which all equality constraints consist of linear combination of $m{h}(m{z})$

Example

$$z_4 - 1.5z_5 - 2.5 = 0$$

$$5z_5 - 2z_3z_5 + 3 = 0$$

$$10z_5 + z_2z_4 + 5 = 0$$

$$-0.5z_4 + z_5 + 0.2z_2z_4 + z_2z_6 - 2.5 = 0$$

$$z_3z_5 - 9 = 0$$

In fact,

Experiment

Experiment 1: Applying to Example Problem

Second Stage ($\mathscr{S}_2(\overline{f_{sum}})$)

$$\begin{split} \max_{\substack{\rho, \boldsymbol{\lambda}, \Delta_1, \Delta_2 \\ \rho, \boldsymbol{\lambda}, \Delta_1, \Delta_2 }} & \rho \\ \text{s.t.} & f_{\text{sum}} - \rho + (y_1 - 7)^2 \lambda_1 + (y_2 - 3)^2 \lambda_2 + (x_2 y_1 + 35)^2 \lambda_3 \\ & + (x_2 y_3 - 10)^2 \lambda_4 + (x_3 y_2 - 9)^2 \lambda_5 \in \Sigma_4[\boldsymbol{z}] \\ & \lambda_k(\boldsymbol{z}) = \boldsymbol{u}_1^{\text{T}} \Delta_k \boldsymbol{u}_1, \qquad k = 1, 2 \\ & \lambda_k \in \mathbb{S}^{n+m}_+, \quad \mu I - \Delta_k \succeq O, \quad k = 1, 2 \\ & \rho \in \mathbb{R}, \quad \lambda_3, \lambda_4, \lambda_5 \in [0, \mu] \end{split}$$

Time (s)		Optimal Value	Recovered Sol. z^*	$\operatorname{Er}(\boldsymbol{z}^*)$
(\mathscr{S}_1)	$(\mathscr{S}_2(f_{\mathrm{sum}}))$	$(\mathscr{S}_2(f_{\mathrm{sum}}))$		
7.6	1.0	1.6×10^{-6}	[-5.0; 3.0; 7.0; 3.0; -2.0]	$9.9 imes 10^{-7}$

Experiment 2: Caluculation Time

"I": (P^2) with C = I, "C[i]": C = C[i]

Review: Problem with Squared Constraints

min
$$h_0(z)$$

s.t. $-h_k(z)^2 \ge 0, \quad k \in \{1, \dots, K\}.$ (P²)

Lagrange function

For $\boldsymbol{z} \in \mathbb{R}^{m+n-1}$ and $\lambda_k(\boldsymbol{z}) \in \Sigma[\boldsymbol{z}]$,

$$\mathcal{L}(oldsymbol{z},oldsymbol{\lambda})\coloneqq h_0(oldsymbol{\lambda})+\sum_{k=1}^K\lambda_k(oldsymbol{z})h_k(oldsymbol{z})^2$$

Let
$$\mathcal{L}^*(\boldsymbol{\lambda}) \coloneqq \inf \{ \mathcal{L}(\boldsymbol{z}, \boldsymbol{\lambda}) \mid \boldsymbol{z} \in \mathbb{R}^{m+n-1} \}.$$

Lagrange Dual Problem

 $\begin{array}{ll} \max & \mathcal{L}^*(\boldsymbol{\lambda}) \\ \text{s.t.} & \boldsymbol{\lambda} \in \left(\boldsymbol{\Sigma}[\boldsymbol{z}]\right)^K. \end{array}$

• $(\Sigma[\mathbf{z}]) \rightarrow (\Sigma_{2d-2d_k}[\mathbf{z}])$: Subproblem for Level-d

Let
$$\mathcal{L}^*(\boldsymbol{\lambda}) \coloneqq \inf \{ \mathcal{L}(\boldsymbol{z}, \boldsymbol{\lambda}) \mid \boldsymbol{z} \in \mathbb{R}^{m+n-1} \}.$$

Lagrange Dual Problem

$$\begin{array}{ll} \max \quad \mathcal{L}^{*}(\boldsymbol{\lambda}) \\ \text{s.t.} \quad \boldsymbol{\lambda} \in \left(\boldsymbol{\Sigma}[\boldsymbol{z}]_{2d-2d_{k}}\right)^{K}. \end{array}$$

• $(\Sigma[\mathbf{z}]) \rightarrow (\Sigma_{2d-2d_k}[\mathbf{z}])$: Subproblem for Level-d

 Table 1: Bipartite graphs.

	\mathcal{G}_1	\mathcal{G}_2	\mathcal{G}_3	\mathcal{G}_4	\mathcal{G}_5	\mathcal{G}_6	\mathcal{G}_7	\mathcal{G}_8	\mathcal{G}_9	\mathcal{G}_{10}
n m max. degree	9	7	6	2	6	2	1	8	1	6
m	1	3	4	8	4	8	9	2	9	4
max. degree	9	5	3	5	4	5	9	6	9	4

Graph Formulation for Γ

Chain Structure and Unique Completion

Fact

The graph is connected²

 \iff Rank-one matrix completion is unique

- $x_1 \longrightarrow y_1 \longrightarrow x_2 \longrightarrow y_3$
- $x_1 \longrightarrow y_2 \longrightarrow x_3$

²a path exists between any two vertices

If the graph is DISconnected

Solution

- 1 Divide the problem to problems of each connected component
- 2 Reorder numbers of indices on each problem
- 3 Solve them
- 4 Overlap them while comparing corresponding elements