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Target Problems

Consider a problem in which a matrix completion problem is hidden.

min
z∈Rn

{u2 (z)}T
Qu2 (z)

s.t.

C

h(z) = 0.
(P )

• Polynomial optimization problem (POP) of z

• h(z) is a vector of polynomials of z:

h(z) = [zizj −Aij ](i,j)∈Λ , Aij is constant,

u2(z) = [1, z1, . . . , zn, z
2
1 , z1z2, . . . , z

2
n]

T ∈ RN := R(
n+2
2 ).

• For C = I , the POP formulation for the rank‐one matrix completion
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Relaxations and Tightness

(P ): NP‐hard

↙ ↘

Level‐1 Lasserre’s Relaxation ⇐ dual⇒ Level‐1 SOS Relaxation

Level‐2 Lasserre’s Relaxation

...

⇐ dual⇒ Level‐2 SOS Relaxation

...

Theorem 11

If Q = IN and C = IK , then level‐2 Lasserre’s relaxation is tight.
(Optimal values of it and (P ) coincide)

1A. Cosse, L. Demanet. “Stable Rank‐One Matrix Completion is Solved by the Level 2 Lasserre Relaxation”,
Foundations of Computational Mathematics, 21, 891–940, 2021.
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Motivation

Question

• Tightness of relaxations hold without Q = IN and C = IK?

• If so, how large class of problems?

=⇒ Classify exactly solvable problems in nonconvex problems

This talk

• High‐rank Q preserving tightness

• In particular, C = IK

Sparsity structure Q will be used to show high‐rank

3



Outline

1. Introduction

2. POP Formulation of Matrix Completion

3. High‐rank matrix Q and tightness

– Sum‐of‐squares relaxation

– High‐rank solution that the relaxation is tight

– Existence of Q for tight

4. Algorithms

– Program to find Q

– Numerical experiment

5. Summary
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Rank‐one Matrix Completion Problem

Recovering a rank‐1 matrix from partially given elements.

Given matrix Completed matrix

A =

 7 3 ?

−35 ? 10

? 9 ?

 −→

 7 3 −2
−35 −15 10

21 9 −6

 : rank‐1

Intuitive formulation:

find X ∈ Rn×m

s.t. rank(X) = 1,

Xij −Aij = 0, (i, j) ∈ Λ. (Λ: index set of given elem)

given (i, j)th element

Example: Λ = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)}
5



Representation of Rank‐one Matrix

To make polynomial optimization (POP),

◦ introduce x ∈ Rn and y ∈ Rm

◦ replace X by xyT

Then, Xij −Aij = 0 ⇐⇒ xiyj −Aij = 0︸ ︷︷ ︸
element of h(z)

, ∀(i, j) ∈ Λ.

POP find z := [x2, . . . , xn,y
T]

T ∈ Rn+m−1

s.t. x1 = 1,

xiyj −Aij = 0, (i, j) ∈ Λ.
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POP for Rank‐one Matrix Completion

Finally, we have

min
z∈Rn

{u2 (z)}T
Qu2 (z)

s.t.

C

h(z) = 0.
(P )

• Introduce Q ∈ SN on objective function.

• Focus

– not on solving the rank‐one matrix completion,

– but on the tightness for problems in which it is hidden.

Assumption Solution exists and it is unique.

7



POP for Rank‐one Matrix Completion

Finally, we have

min
z∈Rn

{u2 (z)}T
Qu2 (z)

s.t. Ch(z) = 0.
(P )

• Introduce Q ∈ SN on objective function.

• Focus

– not on solving the rank‐one matrix completion,

– but on the tightness for problems in which it is hidden.

Assumption Solution exists and it is unique.

7



Example of using C

min
z∈R5

{u2 (z)}T
Qu2 (z)

s.t. y1 − 3
2y2 −

5
2 = 0, 5y2 − 2x3y2 + 3 = 0,

10y2 + x2y1 + 5 = 0, − 1
2y1 + y2 +

1
5x2y1 + x2y3 − 5

2 = 0,

x3y2 − 9 = 0.

⇐⇒


1 − 3

2 0 0 0

5 5 0 0 −2
0 10 1 0 0

− 1
2 1 1

5 1 0

0 0 0 0 1


︸ ︷︷ ︸

C


y1 − 7

y2 − 3

x2y1 + 35

x2y3 − 10

x3y2 − 9


︸ ︷︷ ︸

h(z)

= 0

• Hard to apply privious approach to this problem

• Hard to find C and h(z)
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Sum‐of‐Square Polynomial (SOS Polynomial)

A polynomial p(z) is an sum‐of‐square (SOS) polynomial if

p(z) =

r∑
i=1

{qi(z)}2

for some polynomials q1(z), . . . , qr(z).

• Σd[z] := { SOS polynomials p(z) | degree‐d or less }

Matrix representation of SOS polynomials

p(z) is a degree‐2d SOS polynomial ⇐⇒ ∃W ∈ S(
n+d
d )

+ satisfying

p(z) = ud(z)
T
Wud(z)

for ud(z) consisting of all monomials of degree‐d or less.
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Equivalent problem with squared constraints

Start from (P ) with C = IK :

min
z∈Rn

{u2 (z)}T
Qu2 (z)

s.t. hk (z) = 0, k ∈ {1, . . . ,K}.
(P )

y
min
z∈Rn

{u2 (z)}T
Qu2 (z)

s.t. {hk (z)}2 ≤ 0, k ∈ {1, . . . ,K}.
(P 2)

Differences:

• LHS of hk(z) = 0 becomes an SOS polynomials
• Equality → Inequality
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Level‐2 Sum‐of‐squares (SOS) Relaxation

min
z∈Rn

{u2 (z)}T
Qu2 (z)

s.t. {hk (z)}2 ≤ 0, k ∈ {1, . . . ,K}.
(P 2)

y
max
ρ,λ

ρ

s.t. (u2)
T
Qu2 − ρ+

K∑
k=1

hk(z)
2λk(z) ∈ Σ4[z],

λk(z) ∈ Σ4−2dk
[z], k ∈ {1, . . . ,K}.

=: q(z; ρ,λ)

where Σd[z] := { SOS polynomials p(z) | degree d or less }
dk := degree of hk(z)

Domain space was reduced thanks to hk(z)
2 ≤ 0.

12



Ranks of Two Optimal Solutions

LetM∗ be a solution of Lasserre’s relaxation,
andW ∗ be the matrix representation of

(u2)
T
Qu2 − ρ∗ +

K∑
k=1

hk(z)
2λ∗

k(z)

of a solution of SOS relaxation.

Complementarity Condition

There is a pair of solutions (M∗,W ∗) satisfying

M∗W ∗ = O under the strong duality.

For anyW ∗, there existsM∗ satisfying Sylvester rank inequality:

rank(M∗) + rank(W ∗) ≤ N − rank(M∗W ∗)︸ ︷︷ ︸
=0

= N. 13



Tightness for the SOS Relaxation

Sufficient condition of tightness
The SOS relaxation is tight
⇐= ∃ an optimal solution q(z; ρ∗,λ∗) of the SOS relaxation satisfying

rankW ∗ ≥ N − 1.

Proof There exists an optimal solutionM∗ of the Lasserre’s relaxation:

rank(M∗) ≤ N − rank(W ∗)

≤ N − (N − 1) = 1

It follows fromM∗
NN = 1 that rank(M∗) = 1.

What matrix Q must be chosen for rankW ∗ ≥ N − 1?
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Existence of Q for tight

Proposition
There exist Q and Γ ∈ SN+ satisfying

(u2)
T
Qu2 − (u2)

T
0 Q (u2)0 = (u2)

T
Γu2

rankQ = rankΓ = N − 1

where (u2)0 := u2(z0) and z0 is a solution of (P ).

∴ for any ρ ∈ R and λk(z) ∈ Σ4−2dk
[z] being a feasible solution,

SOS polynomial:

q(z; ρ,λ) = (u2)
T
Qu2 − ρ

SOS poly.
rankΓ = N − 1

+
K∑

k=1

hk(z)
2λk(z)

SOS poly.

︸ ︷︷ ︸
rankW = N − 1

.
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Idea for Proposition

For ith element of u2, define

Qi :=



(i

[(u2)0]
2
i 0T −[(u2)0]i 0T

0 O

i) −[(u2)0]i 1

0 O

 ∈ SN .

=⇒ rank(Qi) = 1, (u2)
T
0 Qi (u2)0 = 0.

Focus on Q :=
∑N

k=2 Q
i, then

◦ rank
(
Q
)
= N − 1.

◦ (u2)
T
Qu2 − (u2)

T
0 Q (u2)0 is a SOS polynomial.

◦ Q is sparse. (called an arrowhead matrix)

16



Tightness Conditions

Remark 4.52

There exists coefficient matrix Q on the objective function such that
the SOS relaxation of (P 2) with C = IK is tight.

Q is one choice that satisfies the remark.ww�
Generalization of C to nonsingular
The same discussion and the existence of Q hold
when CTC is nonsingular.
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Problems for finding Q

Problems

• (u2)0 depends on the true solution z0

• so does Q

Q =


∑N

r=1 [(u2)0]
2
r − [(u2)0]2 · · · − [(u2)0]N

− [(u2)0]2 1
...

. . .
− [(u2)0]N 1


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Program to construct Q

find Q ∈ SN+ , U ∈ SKN
+

s.t. (u2)
T
Qu2 = (h(z)⊗ u2)

T
U (h(z) ⊗ u2) ,

Qii = 1, i ∈ {2, . . . , N},

Qij = 0, (i, j) ∈ {2, . . . , N} × {2, . . . , N}, i ̸= j,

(S1)

Kronecker product

• The first row and column are recovered from h(z).

• The solution Q∗ must be an arrowhead matrix.
◦ Bottom‐right block must be the identity matrix.
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Numerical Experiment

Objective
To evaluate the accuracy of output Q from (S1)

Environment

• Intel Core i9‐12900K / 64GB

• Julia 1.9.2 / Mosek 10.0.2 on Windows 11

Error of estimation

Let z0 be a true solution. The error of z∗ returned by (S1) is

Er(z∗) :=
∥z∗ − z0∥2
∥z0∥2

21



Generated Instances

Assumption: n+m = 10

10 random bipartite graphs
G1, . . . ,G10 ×

10 random rank‐1 matrices
x0(y0)

T
, . . .

=⇒ 100 instances

• Each edge corresponds to a hint of rank‐one completion.

h(z) =
[
xiyj − (x0)i (y0)j

]
(i,j)∈E(Gp)

= 0

• Er(z∗) can be evaluated
because the true solution is z0 := [(x0)2, . . . , (x0)m, (y0)

T
]
T
.

• Random nonsingular matrices C ∈ R9×9 in Ch(z).
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Results: Error of Constructed Q

◦ Exact solution of (P 2) can be recovered when C = I .

◦ Errors (and times) for nonsingular Ck is larger than C = I
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Conclusion

Summary

• We consider (P ) in which rank‐one matrix completion is hidden.

• Sparse and high‐rank matrix Q controls the tightness of SOS relaxation.

• We provide an algorithm to find such a matrix Q.

Future works

• More detailed conditions of Q for tight

• Applying to rank‐one tensor completion

Thank you for your attention!
More information is available: arXiv:2311.14882.
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Recovery using Bipartite Graph

row
1 = x1

x2

x3

column
y1

y2

y3

x2y1
= −35

x1y1 = 7

x2y3 = 10x3y2
= 9

x1y2 = 3

◦ y1 = 7 from the edge (1, 1),
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Recovery using Bipartite Graph

row
1 = x1

x2

x3

column
y1

y2

y3

x2y1
= −35

x1y1 = 7

x2y3 = 10x3y2
= 9

x1y2 = 3

◦ y1 = 7 from the edge (1, 1),

◦ x2 = −5 from the edge (2, 1),

◦ y3 = −2 from the edge (2, 3),

◦ y2 = 3 and x3 = 3 from the others.



Overview of Algorithm

Input: constraints h(z) = 0

Output: estimated solution z∗

1: Solve (S1) and obtain a solution (Q∗, U∗).
2: fsum ← (u2)

T
Q∗u2.

3: Solve (S2(fsum)) using fsum and obtain a solution (ρ∗,λ∗).
4: Find the Gram matrix Γ ∈ SN such that

(u2)
T
Γu2 = fsum − ρ∗ +

K∑
k=1

{hk(z)}2 λ∗
k.

5: Find a vector u∗
2 ∈ RN in the null space of Γ.

6: z∗ ← 1
(u∗

2)1
[(u∗

2)2, (u
∗
2)3, . . . , (u

∗
2)s+1]

T and return z∗.



Problem with Q∗ in Second Stage

fsum(z) := (u2)
T
Q∗u2

max
ρ,λ,∆1,...,∆K

ρ

s.t. fsum(z)− ρ+
K∑

k=1

hk(z)
2λk(z) ∈ Σ4[z]

λk(z) = u1
T∆ku1 (k = 1, . . . ,K)

µI −∆k ⪰ O (k = 1, . . . ,K)

ρ ∈ R, λk(z) ∈ Σ4−2dk
[z], ∆k ∈ Sm+n

+ (k = 1, . . . ,K).

(S2(fsum))



Matrix C is NOT Identity

It becomes a problem in which
all equality constraints consist of linear combination of h(z)

Example


z4 − 1.5z5 − 2.5 = 0

5z5 − 2z3z5 + 3 = 0

10z5 + z2z4 + 5 = 0

−0.5z4 + z5 + 0.2z2z4 + z2z6 − 2.5 = 0

z3z5 − 9 = 0

In fact,

− 0.5z4 + z5 + 0.2z2z4 + z2z6 − 2.5

= −0.5(z4 − 7) + (z5 − 3) + 0.2(z2z4 + 35) + (z2z6 − 10)

= −0.5 h1(z) + h2(z) + 0.2 h3(z) + h4(z)

combination of h1, . . . , h5



Experiment



Experiment 1: Applying to Example Problem

Second Stage (S2(fsum))

max
ρ,λ,∆1,∆2

ρ

s.t. fsum − ρ+ (y1 − 7)2λ1 + (y2 − 3)2λ2 + (x2y1 + 35)2λ3

+(x2y3 − 10)2λ4 + (x3y2 − 9)2λ5 ∈ Σ4[z]

λk(z) = u1
T∆ku1, k = 1, 2

∆k ∈ Sn+m
+ , µI −∆k ⪰ O, k = 1, 2

ρ ∈ R, λ3, λ4, λ5 ∈ [0, µ]

Time (s) Optimal Value Recovered Sol. z∗ Er(z∗)

(S1) (S2(fsum)) (S2(fsum))
7.6 1.0 1.6× 10−6 [−5.0; 3.0; 7.0; 3.0;−2.0] 9.9× 10−7



Experiment 2: Caluculation Time

(a) Estimation of Q (b) Solve by Q∗

“I”: (P 2) with C = I , “C[i]”: C = C[i]



Lagrange Function for (P 2)

Review: Problem with Squared Constraints

min h0(z)

s.t. −hk(z)
2 ≥ 0, k ∈ {1, . . . ,K}.

(P 2)

Lagrange function

For z ∈ Rm+n−1 and λk(z) ∈ Σ[z],

L(z,λ) := h0(λ) +

K∑
k=1

λk(z)hk(z)
2



Lagrange Dual Problem

Let L∗(λ) := inf
{
L(z,λ)

∣∣ z ∈ Rm+n−1
}
.

Lagrange Dual Problem

max L∗(λ)

s.t. λ ∈ (Σ[z])
K
.

• (Σ[z])→ (Σ2d−2dk
[z]): Subproblem for Level‐d
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.
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Property of Generated Bipartite Graph

Table 1: Bipartite graphs.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
n 9 7 6 2 6 2 1 8 1 6

m 1 3 4 8 4 8 9 2 9 4

max. degree 9 5 3 5 4 5 9 6 9 4



Graph Formulation for Γ

Bipartite G({1, . . . , n}, {1, . . . ,m},Γ)

row index col index

Example {(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)}

1

2

3

1

2

3

� �
x1y1

x2y1



Chain Structure and Unique Completion

1

2

3

1

2

3

� �

Fact
The graph is connected2 ⇐⇒ Rank‐one matrix completion is unique

• x1 −→ y1 −→ x2 −→ y3

• x1 −→ y2 −→ x3

2a path exists between any two vertices



If the graph is DISconnected

1

2

3

1

2

3

� �

 7 3 ?

? ? 10

? 9 ?

→
 7 3 ?

? ? 10

21 9 ?

→ ?

Solution

1 Divide the problem to problems of each connected component

2 Reorder numbers of indices on each problem

3 Solve them

4 Overlap them while comparing corresponding elements
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