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Target Problems

Consider a problem in which a matrix completion problem is hidden.

) T
min {2 (2)} Qua (2) (P)
st.  h(z)=0.

e Polynomial optimization problem (POP) of z

e h(z)is a vector of polynomials of z:

h(z) = [2i2j — Aijl; jyens  Aij is constant,

T n+2
uz(2) =[1,21,...,2n,22, 2120,...,22] €RVN =R,

7 n



Target Problems

Consider a problem in which a matrix completion problem is hidden.

min {u (2))"Qus (2) ()
st. Ch(z)=0.

e Polynomial optimization problem (POP) of z

e h(z)is a vector of polynomials of z:

h(z) = [2i2j — Aijl; jyens  Aij is constant,

T
uz(2) =[1,21,...,2n,22, 2120,...,22] € RN = R(

22 n~2¢»2)

e For C = I, the POP formulation for the rank-one matrix completion




Relaxations and Tightness

(P): NP-hard
v hV

Level-1 Lasserre’s Relaxation < dual =  Level-1 SOS Relaxation

Level-2 Lasserre’s Relaxation <« dual =  Level-2 SOS Relaxation

If Q = Iy and C = I, then level-2 Lasserre’s relaxation is tight.
(Optimal values of it and (P) coincide)

LA. Cosse, L. Demanet. “Stable Rank-One Matrix Completion is Solved by the Level 2 Lasserre Relaxation”,
Foundations of Computational Mathematics, 21, 891-940, 2021.



o Tightness of relaxations hold without Q = Iy and C' = Ix?

o If so, how large class of problems?

— Classify exactly solvable problems in nonconvex problems

This talk

e High-rank @) preserving tightness

e |n particular, C = Ig

Sparsity structure @ will be used to show high-rank
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3. High-rank matrix ) and tightness
- Sum-of-squares relaxation
- High-rank solution that the relaxation is tight
- Existence of @ for tight

4. Algorithms
- Program to find

- Numerical experiment

5. Summary



Rank-one Matrix Completion Problem

Recovering a rank-1 matrix from partially given elements.

Given matrix Completed matrix
7T 3 7 7 3 -2
A= |-35 ? 10| — |-35 —15 10 : rank-1
79 7 21 9 -6

Intuitive formulation:

find X € R™™
s.t. rank(X) =1,
Xi; — A =0, (i,j) € A. (A:index set of given elem)

[ given (4, j)th element }

E)(Lple: A= {(1»1)7(172)7(271)1(273)7(?”2)}



Representation of Rank-one Matrix

To make polynomial optimization (POP),

o introduce z € R" and y € R™

o replace X by zy™

Then, X” — A” =0 — ;Y — Az] =0, V(’La]) € A.
N —

element of h(z)

find 2z := [zo,... ,9c,l,yT]T e Rvm-1

s.t. x = ].,

ziy; — Ay =0, (4,5) € A,



POP for Rank-one Matrix Completion

Finally, we have

win {2 (2))7Qua (2)
st.  h(z)=0.

(P)

e Introduce Q € S” on objective function.

e Focus
- not on solving the rank-one matrix completion,

- but on the tightness for problems in which it is hidden.

Solution exists and it is unique.



POP for Rank-one Matrix Completion

Finally, we have

min  {u2 (2)}"Qus (2)
s.t. Ch(z)=0.

(P)

e Introduce Q € S” on objective function.

e Focus
- not on solving the rank-one matrix completion,

- but on the tightness for problems in which it is hidden.

Solution exists and it is unique.



Example of using C'

min {us (=)} Qua (2)

st. y1—3y—2=0, Y2 — 223Y2 +3 =0,
10y2 + zoy1 +5 =0, —y1 +y2 + 2x2y1 + 22ys — 3 =0,

x3y2—9:0.
1 -2 00 0 y—7
5 5 0 0 -2 Y2 — 3
— 0 10 1 0 O xoy1 +35 =0
-3 1 £ 1 0] |zys—10
0O 0 0 0 1 Z3ys — 9
C h(z)

e Hard to apply privious approach to this problem
e Hard to find C and h(z)
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Sum-of-Square Polynomial (SOS Polynomial)

A polynomial p(z) is an sum-of-square (SOS) polynomial if
p(z) => {ai(2)}’
=1
for some polynomials ¢;(2), ..., ¢-(2).

e Y,[z] = {SOS polynomials p(z) | degree-d or less }

Matrix representation of SOS polynomials
n+d
p(z) is a degree-2d SOS polynomial <— IW € s(+ i) satisfying
p(2) = wa(2) Wug(2)

for u,(z) consisting of all monomials of degree-d or less.



Equivalent problem with squared constraints

Start from (P) with C = I:

min (s (2))"Qus (2)
st. hp(z)=0, ke{l,...,K}

11



Equivalent problem with squared constraints

Start from (P) with C = I:

min (s (2))"Qus (2)
st. hp(z)=0, ke{l,...,K}

(P)

min - {us (z)}:QW (2) )
st. {hx(2)}" <0, ke{l,...,K}

Differences:

e LHS of hi(z) = 0 becomes an SOS polynomials
e Equality = Inequality
11



Level-2 Sum-of-squares (SOS) Relaxation

min {uz ()} Qus (2) )
st {he(2)}° <0, ke{l,...,K}.

P x
st (u2) Quo— p+ kz_jl hi(2)2 A (2) € L4[2]

4 )

/\k(z) S 24_2dk[z], ke {1,.. .,K}.

where Ya[z] = {SOS polynomials p(z) | degree d or less }
di, = degree of hy(z)

Domain space was reduced thanks to hy(z)? < 0.
12



Ranks of Two Optimal Solutions

Let M* be a solution of Lasserre’s relaxation,
and W* be the matrix representation of

K
(u2) " Qua — p* + > hi(2)*Mi(2)
k=1
of a solution of SOS relaxation.

Complementarity Condition

There is a pair of solutions (M*, W*) satisfying

M*W* = O under the strong duality.

For any W*, there exists M* satisfying Sylvester rank inequality:
rank(M™) + rank(W*) < N — rank(M*W™)
—_———

=0
= N. 13



Tightness for the SOS Relaxation

Sufficient condition of tightness

The SOS relaxation is tight
<= Jan optimal solution ¢(z; p*, A*) of the SOS relaxation satisfying

rankW* > N — 1.

Proof There exists an optimal solution M * of the Lasserre’s relaxation:

rank(M™*) < N — rank(W™)
<N-(N-1) =1

It follows from M7}, = 1 that rank(M™*) = 1. O

What matrix Q must be chosen for rank W* > N — 1?




Existence of () for tight

There exist Q and I" € Sf satisfying

(u2) " Qua — (u2)y Q (u2)y = (us)" Tuy
rank @ =rank['= N — 1

where (us)o = uz(z0) and zq is a solution of (P).

forany p € Rand Ay (z) € X424, [2] being a feasible solution,
SOS polynomial:
K
a(zpA) = () Qua—p + 3 h(2)?\i(2) .
k=1

SOS poly.

ly.
rank'=N — 1 SOS poly

rankW =N —1



Idea for Proposition

For ith element of u,, define

[(uz)o]? | 0" —[(u)oli 0"
v i) | —[(uz)oli 1 €5
0 (0]

_— rank(Qi) = 1 (U2>E)F Q' (u2), =0.
Focuson Q == Y r_, Q', then

o rank (@) =N-1
o (u2) Qusy — (UQ)OT@ (u2), is a SOS polynomial.

o @ is sparse. (called an arrowhead matrix)

16



Tightness Conditions

Remark 4.52

There exists coefficient matrix @) on the objective function such that
the SOS relaxation of (P?) with C' = I is tight.

@ is one choice that satisfies the remark.

|

Generalization of C' to nonsingular
The same discussion and the existence of @ hold
when CTC is nonsingular.
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4. Algorithms
- Program to find Q)

- Numerical experiment

5. Summary
18



Problems for finding

¢ (ug)o depends on the true solution z

» sodoes
SN [(w2)ol? = [(u2)ol, — [(w2)ol
5o [(uﬁ)o]z 1
— [(u2)o] & 1



Program to construct )

find @ € Sf ,Ue Si(N [ Kronecki; product ]

st (u2) Qua = (h(2) @ uy) U (h(2) ® us),
Qii:17 iE{Qa"'7N}7
Qijzoa (i)j)6{27“',N}X{27'“7N}7i#ja

()

e The first row and column are recovered from h(z).
e The solution Q* must be an arrowhead matrix.

o Bottom-right block must be the identity matrix.

20



Numerical Experiment

Objective

To evaluate the accuracy of output @ from (%)

Environment

e Intel Core i9-12900K / 64GB
e Julia 1.9.2 / Mosek 10.0.2 on Windows 11

Error of estimation \

Let 2, be a true solution. The error of z* returned by (.#,) is

&3 —
Fr(z") = 12" = zoll2
[zoll2



Generated Instances

‘Assumption: n+m =10 ‘

10 random bipartite graphs 10 random rank-1 matrices
G1,---,G10 x zo(yo) '

= 100 instances

e Each edge corresponds to a hint of rank-one completion.

h(Z) _ [.Tiyj — (.’1}0)1 (yO)j (i,7)EE(Gp) -0

e Er(z*) can be evaluated
o
because the true solution is zg := [(x0)2, - - -, (€0)m, (yO)T] .

e Random nonsingular matrices C' € R*? in Ch(z).
22



Results: Error of Constructed ()

o Exact solution of (P2) can be recovered when C = I.

o Errors (and times) for nonsingular Cy, is larger than C = T

Error
=
o

&

107

10—10

23



Conclusion

e We consider (P) in which rank-one matrix completion is hidden.
e Sparse and high-rank matrix @) controls the tightness of SOS relaxation.

e We provide an algorithm to find such a matrix Q.

e More detailed conditions of Q) for tight

e Applying to rank-one tensor completion

Thank you for your attention!
More information is available: arXiv:2311.14882.

24



Recovery using Bipartite Graph

o Yy =7 from the edge (1, 1),
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Recovery using Bipartite Graph

1Yy = 7

o Yy =7 from the edge (1, 1),
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o yz=—2 from the edge (2, 3),



Recovery using Bipartite Graph

1Yy = 7

o Yy =7 from the edge (1, 1),
o mxy=-5 from the edge (2, 1),
o yz=—2 from the edge (2, 3),

o yYy3=3 and z3 =3 from the others.



Overview of Algorithm

Input: constraints h(z)=0
Output: estimated solution z*

Solve (1) and obtain a solution (Q*, U*).

foum (UQ)TQ*Uz-

Solve (S ( fsum)) USINg fsum and obtain a solution (p*, A¥).
Find the Gram matrix I € SV such that

(u2) "Tuz = foum — p" +Z{hk )} A

k=1

5: Find a vector uj € RY in the null space of .

A (u*) [(u5)a, (uh)s, . .., (u})st1]" and return z*.



Problem with Q* in Second Stage

fsum (Z) = (UQ)TQ*uZ

max p

st fam(2) —p+ ki—(:l hi(2)* Mk (2) € 34]2]

Me(2) = w1 TAguy (k=1,...,K)

pl —Ap =0 (k=1,...,K)

p ER, Me(2) € Ty_ng,[2], Ap € ST (k=1,...,K).
(4 (fsum))



Matrix C' is NOT Identity

It becomes a problem in which
all equality constraints consist of linear combination of h(z)

24— 152 —25=0
525 — 22325 +3 =0
1025 + 2024 +5=0
—0.524 + 25 + 0.22924 + 2026 — 2.5 =0
Z325 — 9=0

In fact,
—0.524 + 25 + 0.22024 + 2026 — 2.5
= —0.5(z4 — 7) + (25 — 3) + 0.2(2224 + 35) + (2226 — 10)
=—0.5 hi(2z) + ha(z) +0.2 hs(z) + hy(2)

combination of A4, ..., hs

‘O



Experiment




Experiment 1: Applying to Example Problem

Second Stage (.75 (fsum))

max  p
PN, A1, AS

st foum — P+ (Y1 — 7)%A1 + (2 — 3)% X2 + (2291 + 35)2 A3
+(z2ys — 10)? Ay + (2352 — 9)*As € Ty[2]
Ae(z) = u TARuq, k=1,2
A eST™, ul— Ay =0, k=1,2
pER, A3,A4, X5 € [0, ]

Time (s) Optimal Value Recovered Sol. z* Er(z*)
(yl) (yQ(.fsum)) (y2(fsum))
7.6 1.0 1.6 x 10°6  [—5.0;3.0;7.0;3.0;—2.0] 9.9 x 10~
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(b) Solve by Q*

(a) Estimation of Q

“Cli]": C = CJi]

=1,

“I": (P?) with C



Lagrange Function for (P?)

Review: Problem with Squared Constraints

min  ho(z)

2
st. —hp(2)2>0, ke{l,...,K}. (P

Lagrange function ‘

For z ¢ R™"" ! and A\,(z) € X[z],

K
L(z,) = ho(A) + Y Me(2)hi(2)?

k=1



Lagrange Dual Problem

Let £*(X) = inf{L(z,A) | z € R™ 1L

Lagrange Dual Problem

max L*(\)
st Ae (Z)X.

e (X[z]) = (X24-24,[2]): Subproblem for Level-d



Lagrange Dual Problem

Let £*(X) = inf{L(z,A) | z € R™ 1L

Lagrange Dual Problem

max L*(\)
st A€ (D[z]aam2a, )

e (X[z]) = (X24-24,[2]): Subproblem for Level-d



Property of Generated Bipartite Graph

Table 1: Bipartite graphs.

G G2 G3 Gis G5 Gs Gr Gz Gg Gio
n 9 7 6 2 6 2 1 8 1 6
m 1 3 4 8 4 8 9 2 9 4
9 5 3 5) 4 5) 9 6 9 4

max. degree



Graph Formulation for I

Bipartite G({1,...,n}, {1,...,m},T)

row index col index
{(1,),(1,2),(2,1),(2,3),3,2)}




Chain Structure and Unique Completion

1 1
2 2
3 3

The graph is connected®> <= Rank-one matrix completion is unique

® X1 —>Yr —> T2 —Y3

® Ty —> Y2 —> I3

2a path exists between any two vertices



If the graph is DISconnected

1 1

2 2

3 3
7 3 ? 7 3 ?
? ?7 10 | — ? ?2 10 | =7
? 9 ? 21 9 ?

1 Divide the problem to problems of each connected component
2 Reorder numbers of indices on each problem
3 Solve them

4 Overlap them while comparing corresponding elements
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