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Vulnerability on Neural Networks (NNs)

‘ Uncertainty and adversarial attacks ‘

e Panda image + small noise [GSS14]

+.007 x

“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

e Stop sign + optical attacks - Speed limit 60 sign

a barrier to applications where reliability is critical (e.g., self-driving cars)

[GSS14] Goodfellow et al., Explaining and Harnessing Adversarial Examples, ICLR 2015, 2014.



Verifying Safety of NNs

Let f: R™ — R"* be a NN.

‘ Input set X C R™

we wish to evaluate
f
® O

Let S,: a set where no misclassification occurs = ‘ safety specification set‘

[Output Y = {f(x) | = € X} |

Def: Safety Verification
Check whether ) C S, holds or not for a given S,
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DeepSDP

Semidefinite programming-based method of safety verification.

o M >0 <= M is positive semidefinite.

General Formulation of DeepSDP

min, 9(P,Q,S)

)

s.t. Min(P) + Mmia(Q) + Mouw (S) = O,
PEPX, QGQ(}Sa SeS.

The above problem is less accurate than other methods [NP21].

[NP21] Newton and Papachristodoulou, Neural network verification using polynomial optimisation, IEEE
CDC, 2021.



Accuracy of DeepSDP with Other Method

Y: Estimated output set < ): True output set (gray) [NP21]
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o All methods overestimate ) in order to cover the whole output in ).
o Accurate verification favors a smaller ).

Motivation
What conditions make DeepSDP highly accurate?
We address it by using an exact relaxation.




Quadratically constrained quadratic programming

e}

Exact semidefinite programming (SDP) relaxation

(e}

o

Single-layer feed-forward neural network

o

Formulation of DeepSDP for safety verification

Exact SDP relaxation in safety verification

(e}

Proof

(e}

o

Summary



QCQP: Quadratically Constrained Quadratic Programming

Consider a quadratic programming with quadratic constraints:

* . : T 0 0\T
= 2
v wrréeri - Qx + (q)a:

T T . (P)
st. z QPx+2(¢P?) x<b,, pec[ml={1,...,m}.

Binary programming, MAX-CUT, optimal flow problems,...

e Behind the safety verification
e Generally non-convex & NP-hard

e Approximately solvable via SDP relaxation



Semidefinite Programming (SDP) Relaxation

Define two notation:
o QP e X = Z Q Frobenius inner product.
o X = zaT ¢:¢ X — zz" is positive semidefinite.

QCQP
v* = min {wTQOw + 2(q0)Ta: ‘ zTQrz + 2(qp)Ta: <b, pe [m]} (P)
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} Pe)

Q" e X +2(¢q°) & < by, p € [m)]

= nin {QO o X +2(¢°) @

v

min {QO ¢ X +2(¢") @

Semidefinite Programming (SDP) Relaxation

—_ *
= Uspp



Exact SDP Relaxation

Def: Exactness

SDP relaxation (Pr) is exact (tight) if v* = vpp

ie, min{zTQ%x|zTQrx <b,, pe{l,...,m}} 7)
X = xxt
_. 0o X -
mln{Q ° ‘ Qp.Xprape{l,...am} } (PR)

e Sufficient conditions for exactness have been studied

e Exact <= (Pg) has arank-1 solution X*
o Decomposition #&T = X* exists

o & is a solution of QCQP (P)
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Single-layer Neural Networks

WO, W: weight matrices, b°,b': bias vectors

Neural network

z! = p(Wo2° 4 1),
f(&®) =w'z! +b'.

Note we consider the case that
e W!=1,andb' = 0.
e ¢ is an element-wise RelLU function, i.e.,

T

¢(@) = |p(x1) - @)

where o(z;) := max {0, z; }.
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Polytope Safety Specification Set

Consider polytope safety specification set S,

o Let S, be a quadrilateral below.

o Y C S, can be verified via four half-spaces.

S’!/

Setting |

Assume that safety specification set .S, is a half-space.

11
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DeepSDP for Single-layer NN

Consider a half-space H = {y € R" | ¢y — d > 0}.

DeepSDP to verify Y C H

ey 2
&'z —p* —az' o0 —2d 0T (T
s.t. - I O|+| 0 O O
0 O O c O O
0 VTWO —VT—T]T
+ w9 0) —(w9 " diag(A) | = O,

—v—n —diagA\)W?° 2 diag(\)
yeRy, Av,neR}, deR.

e An SDP, solvable in polynomial-time
e Generated from a QCQP by relaxing and taking the dual



Exactness Around Today’s Problems

acar Correspondence QCQP for
[~~~ AAAA~AA~P

safety verification

Exactness of relaxation

Primal
SDP relaxation

Strong duality

Dual . DeepSDP ]
SDP relaxation

Exactness and Accuracy

Exact relaxation allows DeepSDP to solve the original QCQP.
13



Primal SDP Relaxation (= Dual of DeepSDP)

e’: a vector where ith element is 1, the others are 0.

min 2¢Tx!
XOOZ,X’TOX“
Te—p? —a" o 1 ()" (V)"
5.t —& I 0|eG<0,Gi= |2 x° (x0T,
0 o O z! X110 X1
[0 0" —10(e)”
0 0] f(WO)Tei e’)T e (G <0,
e —ei(ez)TWO Zei(eZ)T
2 ()W (o)
wo)'et 0 O |eG<0,
| —e€ O O
[0 0" —(&)"
0 0] O e(G <O, 1=1,...,n1
e O O

14



o Exact SDP relaxation in safety verification

o Proof

o Summary

15



Theoretical Result

Thm: Exactness condition for a single-layer network

The primal SDP relaxation is exact if

o X ={z|[xz—2[, <p}or
o ¥ ={z||x—2|_ <p}) and WO = 1.

In addition, DeepSDP is also exact under strong duality.

e This talk focuses on the first sufficient condition (hyper-ellipsoid).
e We discuss the derivation in the remaining time, via
o transformation using vector e,

o decomposition to two problems.



Gram Matrix Transformation

Fix e € R0t satisfying ||e|| = 1. (arbitrary)
e Define new variables u!,...,u™, and v',..., o™ € RIFmotn,

e Substitute 2°, ', X9, X10, X1 in the primal SDP by

[ eTa! ] [ ()Tl (v1) Tumo

=] ¢ | eR™, XY= : : e R™MX"M0,
eT’;L"O (v™m .)T L oaooc . (v™ ).Tuno
[Tyl ] [ ()Tl (v!) Tom

x! = : e R™, XU = : e Ss™.
eT:Unl (vnl.)Tvl ..... (o™ ).Tvm

Example 0 oF _(ei)T
0> 0 O oG =-2'ex! =—2¢Tv" foralli.

17



Equivalent Formulation of SDP Relaxation

The following problem is obtained from the primal SDP relaxation.

min QZZ 1cle v? (1)
ud vt
s.t. eTv >0, 1=1,...,n1, (2)

eTv' 2 e (Lj2, Wiju! +8e), i=1,...,m, ()
. . T .
ol < (5o W +00e) wi, i=1,.m, (@)

no
>l — jell3 < o (5)

Jj=1

18



Exactness Condition by Collinearity with e

Prop: Exactness condition for collinearity in [Zhang '20]

Suppose there exists an optimal solution {(u!)*, ..., (u™0)*, (v1)*,..., (v"™1)*}
which are collinear with e. Then, the primal SDP relaxation is exact.

Def: Collinearity

Vectors {a',...,a™} C R""*" are collinear with e if

leTa'| = ||a’| forallie{1,...,m}.

It is suffice to show the collinearity of a solution of the transformed problem.

[Zhang '20] Zhang, On the tightness of semidefinite relaxations for certifying robustness to adversarial
examples, NeurlPS, 2020.



Decomposition according to v’ and v°

Inner problem: constraints using u’

U(vl,. . o™) =

] 2
. no A
min E 0 ||u3 —x'eH
=1 J
ul,... uno J 2

st. eTv' > eT (Z;ﬁl Wijul + b?e), i=1,...,n1,(3) (Ss)

12 < (S5, Wogw? + Be) v i=1,....m, (4)

Outer problem: the remains and ¥

min  2Y°7, ¢; eTv (1)
vl,... o™ =
st. eTo! >0, i=1,...,n1, (2) (51)

The case e = e! is only considered due to time limitation.



Relationship Between Their Solutions

A part of KKT condition of (Ss):

’U,1 §3161 Wilel VVH’Uz
ni ni

. v . )\1
R 2 R R 2

. i=1 i=1 ;
uno xnoel Winel Winv"

Lemma: Linear Combination

For any optimal solution (u!)*, ..., (u")* of (Sa),
there exist m € R™ and M € R™ %" such that

n1
(w!)* = mjel + ZMijvi foreach j € {1,...,np}.

i=1

It suffices to show (vi)*s are collinear to e'.




Collinearity in (S))

min  2) 7, ¢; el (1)
vl . on i=
st. eTv' >0,i=1,...,n, (2)

2
<p.
2

;—Z;)e —G—ZMU’U

(=l

>

For (S), we can show the following lemma:

Lemma: Collinearity of (v*)*

(S1) has an optimal solution (v!)*, ..., (v™)* which are collinear to e!.

Therefore, the SDP relaxation is exact due to the collinearity.



Collinearity in (S))

min  2) 7, ¢; el (1)
vl . on
st. eTv' >0,i=1,...,n, (2)
! ) (S1)
Z = e —G—ZMU'U < p?.
j=1 (=l 2
\ Essence of Proof. \
e Let (v',...,9™) be an optimal solution of (S).
e Assume at least one of ©!,..., 9™ is not collinear to e'.
e Define
) ) T
o = [@;,0, ---,o] .
e Then, (¢',...,9™) is another optimal solution.

o The objective value is the same.
22



Conclusion

e \erification of the safety of Neural Networks

e Exactness conditions of DeepSDP in this context

¢ Analyze the non-polyhedral case of S,

e Weaken the assumptions on the input set X’
Thank you for your attention!

For more details, see arXiv:2504.09934

Tight Semidefinite Relaxations for Verifying Robustness of Neural Networks
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QCQP: Quadratically Constrained Quadratic Programming

Consider a quadratic programming with quadratic constraints:

v* = min xTQ%

zER™ (’P)
st. xTQPx <b, pe[m]=/{1,...,m},

e Generally, non-convex & NP-hard

e Semidefinite programming (SDP) relaxation

Applications

Binary programming, MAX-CUT, optimal flow problems,...



Exactness for SDP Relaxation

The following equality holds:

.
v* = min< Q" e X XzO0 = vipp
QP e X <b, Vpe[m]

<= rank-1 solution X* exists

Exact SDP relaxation —
o Original QCQP is exactly solvable (in theorically)

o The gap between a class of QCQPs and their relaxations is identified.

What conditions of QCQPs guarantee the exactness?



Constraints for Hidden Layers




Valid Cuts

Let w® = WOxz° + °.

Valid Cuts for ReLU

The following inequation always holds



Input Constraint

Since z° € X = {z |||z — 2|, < p}.

ool

\ In SDP relaxation \

2 2
S<p

Te—p2 —2" o 1 (29" (aV)"
—& I Of e :BO XOO XlOT § 0
0 O (@) :121 X10 X11
=G

In DeepSDP| By introducing a dual variable ~,
&'z —p* —&" 0
y -z I O
0 O O



DeepSDP for Single-layer NN

Consider a half-space H = {y € R"* | cTy — d > 0}.

DeepSDP to verify Y C H

ey 2
&tz —p> -7 o —2d 0T (T
st. y| —& I Oo|l+]0 o0 o
0 0 O c O O
0 IO Tyt
+ | 'y 0 —(w°)" diag(A)| = O,

—v—n —diag(A\)W?° 2 diag(\)
vyeR,, Av,meR}, deR.

e An SDP, solvable in polynomial-time
e Generated from a QCQP by relaxing and taking the dual



Safety Specification Set

Consider a half-space H = {y € R" | cTy —d > 0}.

o The slope ¢ according to each half-space is given.

o The largest d makes H smaller.

In SDP relaxation

—2d 0T T 1 ()" (2)"
e H = 0 O Of o[z X5 Xi07| <0
c O O ! Xy X11

In DeepSDP| Let d behave as a dual variable.
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0 0 O c O O
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Quadratic Formulation for ReLU Function

‘ Review: ¢ applies element-wisely ReLU function ¢ ‘

Let w® .= W% + °. Foranyi € {1,...,n1},

0 0 _ w9 <0
o(w?) = max{0,w)} <= <p(w02) (90(151) w’O) -
owd) >w), ) >0.
In QCQP| The first inequality is
1 1o o 0T 1
w? 0 O —e’ (ei)T w? <0, i=1,...,m
T T



Transformation of [1, w°, ¢(w®)]"

Equivalently, fori € {1,...,n1},

17" 71 o" o™ o 0T 0T 1 of of
2 [ WO o o 0 @ —ei(e))| | W O
'] [0 0 I |0 —ei(ef)" 2ei(el)T| |0 O I
e L’L
\In SDP relaxation\ LieG<0, ie{l,....,n1}
In DeepSDP | Introducing a dual variable A € R"", 2?211 NiL;
Constraint  p(w?) (p(w?) —w?) <0 @w?) >w? @w?) >0

Dual variable i




Input Set X C R™

Set X contains the uncertainty and attacks.

e Each input 2° is chosen from X.

e The safety of z° is evaluated by S,,.

X is not the domain of NN f.

Various shapes are possible.
o hyper-ellipsoid & = {x||x—z|, <p}.
o hyper-rectangle X = {x| |z — x| < p}.

Setting Il

This talk covers the case where X is a hyper-ellipsoid.
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