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DeepSDP

Semidefinite programming(SDP)-based method can be considered
e Quadratic constraints can formulate NN with ReLU ¢
y=¢(z) =max{0,2} <<= {y=>0, y>=z, yly—z)=0}

e DeepSDP is dual of SDP relaxation
(solvable in polynomial time)

Natual form DeepSDP
QCQP Primal SDP Dual SDP

relax dual



Exactness of Relaxation and Our Motivation

Two gaps exist

e Duality gap ( Primal SDP and Dual SDP )
o =0 under strong duality

e Relaxation gap ( QCQP and Primal SDP )
o =0 <= SDP relaxation is exact

Motivation of this talk

e Assume strong duality = no duality gap

o Under what conditions is the primal SDP relaxation exact?



Quadratically constrained quadratic programming (QCQP)

(e}

Exact semidefinite programming (SDP) relaxation

o

o

Single-layer feed-forward neural network

o

QCQP formulation for safety verification

Exactness conditions for SDP relaxation
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QCQP: Quadratically Constrained Quadratic Programming

Quadratic objective function and quadratic constraints

v* == min xTQ% + 2(q° T
zER™ ( )T (P)
st. zTQPz +2(gP) = <b,, pem|l={1,...,m}h

e Generally non-convex & NP-hard

e Approximately solvable via SDP relaxation



SDP Relaxation

QCQP
v* = min {wTQOm + 2(q0)T:c ‘ 2TQPx +2(qP) @ < by, p € [m]} (P)

= min {QO o X +2(¢") @

X =z2xT
QP e X +2(¢q°) ' < by, p € [m)]

| oo

QP 0X+2(q0)Tw <bp, p€[m]

Y]

min {QO e X + 2(q0)T:c

Semidefinite Programming (SDP) Relaxation
= Uspp

o QP e X = Z Q};Xi;:  Frobenius inner product.

o X = axxT <:> X — xxT is positive semidefinite.



Exact SDP Relaxation

Def: Exactness

SDP relaxation (Pg) is exact (tight) if v* = v{p

e Exact <= (Pgr) has arank-1 solution X*

X*=zt(x”) = l

o Sufficient conditions for general QCQPs have been studied
o Sparsity and graphs
o Projection of epigraphs

o Collinearity of Gram matrix representation




Gram Matrix Transformation

Replace (x, X) in SDP relaxation:

e Fix e € R® with |le| =1

e Introduce u',..., u" € R’ so that
eTe | eTul oo eTu”
1| 2T eT"u,1 (’u,l)Tu1 ....... ('u,l)Tu”
eTum | (u) u! (u")

QP X +2(q ZZQ +2Zq§’xi



Exactness Condition for Gram Matrix Representation

Finally, we obtain
vépp | = min ) > QY (ui)Tuj +23 ¢eTul
i 7 3

st 22 QY; (ui)Tuj +2Y ¢?eTul <b,, pe[m],
T 5 ;

ul,... u" e R
Proposition [Z20]
SDP relaxation is exact if there exist an optimal solution (u!)",..., (u")*

which are collinear to e, i.e.,

leTu’| = ||uf|| forallie [n].

[Z20] Zhang, On the tightness of semidefinite relaxations for certifying robustness to adversarial examples,
NeurlPS, 2020.
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Single-layer feed-forward neural network
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Single-layer Neural Networks

WO, W1 weight matrices, b°,b': bias vectors
Neural network
x! = oW 4 %),
f(x®) = wlz! +b'.

Note we consider the case that
e W!=1Iandb' =0.
e ¢ is an element-wise RelLU function, i.e.,

T

¢(@) = |p(@1) - @lan)]

where ¢(z;) = max {0, z;}.

11



Input Set X C R™

Set X contains the uncertainty and attacks.

e Each input 20 is chosen from X.

e The safety of z¥ is evaluated by S,,.

X is not the domain of NN f.

Various shapes are possible.
o hyper-ellipsoid & = {z||x—z|, <p}.
o hyper-rectangle X = {x||x — x| < p}.

Setting Il

This talk covers the case where X is a hyper-ellipsoid.



Polytope Safety Specification Set

Consider polytope safety specification set S,

o Let S, be a quadrilateral below.
o Y C S, can be verified via four half-spaces.

Sy

Setting |

Assume that safety specification set S, is a half-space

H::{yean}cTy—dZO}.
13
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QCQP Formulation

Natual form
QCQP Primal SDP DeepSDP

relax

dual

min 2¢Tx!

st. x>0, ' >W°+8°, z'o (Wowo +b° — wl) <0,
(+ some valid cuts ),
e X ={z||lz—2z|, <p}, z'eR™.

» = Hadamard product

Determine a constant term d for fixed ¢ in

minimize maximize
in primal side in dual side

14



Primal SDP Relaxation

Natual form

QCQP Primal SDP DeepSDP

relax dual

min 2¢Ta!
st. TeX% —23Tx0 < p2 3T,
(ei)Twl >0, (ei)Ta:l > (ei)T (WO:BO aF bo) , t=1,...,n],
X}il_b?zl_ij%XileSO, 1=1,...,n1,
1 (=) (@)
20 X00 (Xm)T =0
et X1 Xt e’: the ith unit vector
Verify the exactness of (primal) SDP relaxation
e checking “collinearity” of another form

15



Dual SDP relaxation

Natual form
relax dual
%g}i};,d 2d
&tz —p> —zT o —2d 0T (T
st. v —& I O|+|0 O O
0 O O c O O
0 IO _VT_,',’T
+ |y 0 —(w°)" diag(A)| = O,

—v—n —diag\W° 2 diag(\)
yeRy, Av,neRy, deR.

16



Our Theoretical Results

For previous QCQP,

The primal SDP relaxation is exact if

e X={z||lz-2z|, <p}or
o X ={z|||lxz— 2| <p} W°=1Ianda& > —b".

In addition, DeepSDP is also exact under strong duality.

e No extra assumption in hyper-ellipsoid case.

e Proof depending on
Gram matrix representation with e = el.



Gram Matrix Representation of Safety Verification

o Assignu/ € R® for ¥, and v’ € R® for x':
TP TP
x’ = {(el)Tul, e (el)Tu"O] ,xt = [(el)Tvl7 e (el)Tvnl}
o Similarly,

(X% = (w) W, XV = (u)) v?, (XU = (v]) 0
Primal SDP is equivalently

min 237, e (¢1) "
s.t. (el)Tvi >0, 1=1,...,n1,
() ' = (e!)" (Z?il Wiju’ + b?el), 6= lyeoein,
) ) T
||vl||§ S (Z;Lil Wiju]+bzoel) UZ? i:]-a"',nh
no
Dl —ijelll3 < p

j=1 18



Decomposition according to u/ and v’

min 2 2 1cl( )T'vi

i vl

s.t. (el)Tvi >0,

i:l,...,nl, (2)

() v > ()" (Shoy Wygwd +80e!), i=1,...,m1, ()

o5 < (00, Wil + e "o, i=1...om, (@)
2 Jj=1""14

no
Yl —dets < o

=il
Inner problem

. 20 3 & 2
ulf?}{gno JZ:IHUJ _xj6||2

st (3), (4).

Outer problem

1minn (1)
s.t.  (2)

T(vl,. .., o™) < p2

19



Relationship Between Their Solutions

A part of KKT condition of Inner problem :

u i”le Wﬂel n Wile

. = i=
uno T el Winel

Lemma: Linear Combination

For any optimal solution (u!)*, ..., (u")* of Inner problem,
there exist m € R and M € R"**"° such that
(u)* =mje' + ZM,-jvl foreachj € {1,...,n0}.
o=l



Collinearity in Outer-problem

Using m and M changes Outer problem into

vll?’,l,hq}nl 2 Zl 1 Ci e ’U (1)
st. eTv' >0,i=1,...,n, (2)
no ni 2
Z (m; —:%j)el —|—§:MijvZ < p2.
j=1 i=1 9

Lemma: Collinearity of (v*)*

Outer problem has an optimal solution (v!)*, ..., (v™)* collinear to e'.

Therefore, the SDP relaxation is exact due to the collinearity.



Collinearity in Outer-problem

Using m and M changes Outer problem into

min  2Y°7 ¢; eTv (1)
vl o™
st. eTv' >0,i=1,...,n, (2)
no ni Z
Z (m; — i) e’ + ZMUUZ < pt
7j=1 =1l 2
\ Essence of Proof. \
o Let (v',...,9™) be an optimal solution.
e Assume at least one of ©!,..., ™ is not collinear to e!.
e Define
v ) I
o= [@g,o, ---,o] .
e Then, (f)l, ...,®") is another optimal solution.

21



o Graphical explanation of exactness

o Summary

22



Meaning of Exact Relaxation

Current situation

e Instead of checking whether ) C 5,

(ck)Ty — > O} C Sy.

Optimal Solutions

yc H::ﬂ{yER"2
k

Where does exactness appear? ‘

e Half-space H supports ) at a face.
e Margin between H and S, increases.
o lItis the robustness of the input set X.

o <= X can be made larger.

23



Instance with Exact Relaxation

Example: a single-layer NN

wo_ | V2 541 (10 <05 |0
- |-6/5 2/5|° o o1’ S |-02|’ ~lo|”

with the input set

€2 Y2

y + o(Woz0 +1°)




Experiment Result in Mosek and Julia

Slope c* Solution Y2
(&1 C2 dr X
1 0| —8.42 x 10710
0 1| —3.45 x 10710
-1 1 ~1.47 11
1 -1 —1.26
—1/4 -1 ~1.32 Y
~1/2 -1 —1.46 # , U
1 1 ~1.91 -1 0 1 }\
-2 -1 —3.16
4 1 —5.96 11
Observation

All boundaries intersect ) at a point

25
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Conclusion

o Safety verification of single-layer neural networks
e Exactness conditions of SDP relaxation

e Graphical insight for exactness

e Analyze the non-polyhedral case of S,

e Extend results to other networks

Thank you for your attention!

For more details, see arXiv:2504.09934

Exact Semidefinite Relaxations for Verifying Robustness of Neural Networks

26



e Less accurate than other methods in general [NP21].

e Accurate when the relaxation is exact.

mmmmm NN SparsePsatz, 2nd Order

s DcepSDP

4 a-3-CROWN
mmmm DeepPoly

2 e True Values

[NP21] Newton and Papachristodoulou, Neural network verification using polynomial optimisation, IEEE
CDC, 2021.



Constraints for Hidden Layers




Valid Cuts

Let w® = WOoxz° + b°.

Valid Cuts for ReLU

The following inequation always holds



Input Constraint

Sincez® € X = {z| ||z — Z|, < p}.

ool

\ In SDP relaxation \

2 2
S<p

Te—p2 —2" o 1 (29" (aV)"
—& I Of e :BO XOO XlOT § 0
0 O (@) :121 X10 X11
=G

In DeepSDP| By introducing a dual variable ~,
&'z —p* —&" 0
y -z I O
0 O O



Safety Specification Set

Consider a half-space H = {y € R"™ | cTy —d > 0}.

o The slope ¢ according to each half-space is given.

o The largest d makes H smaller.

In SDP relaxation

—2d 0T T 1 ()" (2)"
e H = 0 O Of o[z X5 Xi07| <0
c O O ! Xy X11

In DeepSDP| Let d behave as a dual variable.



Quadratic Formulation for ReLU Function

‘ Review: ¢ applies element-wisely ReLU function ¢ ‘

Let w® .= W% 4+ °. Foranyi e {1,...,n1},

0 0 _ w9 <0
o(w?) = max{0,w)} <= <p(w02) (90(151) w’O) -
owd) >w), ) >0.
In QCQP| The first inequality is
1 1o o 0T 1
w? 0 O —e’ (ei)T w? <0, i=1,...,m
T T



Transformation of [1, w°, ¢(w®)]"

Equivalently, fori € {1,...,n1},

17" 71 o" o™ o 0T 0T 1 of of
2 [ WO o o 0  —ei(e))| | W o
'] [0 0 I |0 —ei(ef)" 2ei(el)T| |0 O I
e L’L
\In SDP relaxation\ LieG<0, ie{l,....,n1}
In DeepSDP | Introducing a dual variable XA € R", 2?211 NiL;
Constraint  p(w?) (p(w?) —w?) <0 w?) >w? w?) >0

Dual variable i
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