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Safety Verification of Neural Networks (NNs)

Neural network
f : Rn0 → RnL

Rn0 ∋ x0 y = f(x0)

+ noise

◦ adversarial attacks
◦ uncertainty

safety specification set

Safety Verification

• Evaluation of the robustness of x0

• By verification of Y ⊆ Sy from given X , f, Sy
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Safety Verification of Neural Networks (NNs)

Sy

Neural network
f : Rn0 → RnL

with noise

◦ adversarial attacks
◦ uncertainty

same class with y

X Y

safety specification set

Safety Verification

• Evaluation of the robustness of x0

• By verification of Y ⊆ Sy from given X , f, Sy
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DeepSDP

Semidefinite programming(SDP)‐based method can be considered

• Quadratic constraints can formulate NN with ReLU ϕ

y = ϕ(x) := max{0, x} ⇐⇒ {y ≥ 0, y ≥ x, y(y − x) = 0}

• DeepSDP is dual of SDP relaxation
(solvable in polynomial time)

relax
Primal SDPQCQP Dual SDP

dual

DeepSDPNatual form
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Exactness of Relaxation and Our Motivation

Two gaps exist

• Duality gap ( Primal SDP and Dual SDP )
◦ = 0 under strong duality

• Relaxation gap ( QCQP and Primal SDP )
◦ = 0 ⇐⇒ SDP relaxation is exact

Motivation of this talk

• Assume strong duality ⇒ no duality gap

• Under what conditions is the primal SDP relaxation exact?
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Outline

◦ Introduction

◦ Quadratically constrained quadratic programming (QCQP)

◦ Exact semidefinite programming (SDP) relaxation

◦ Single‐layer feed‐forward neural network

◦ QCQP formulation for safety verification

◦ Exactness conditions for SDP relaxation

◦ Graphical explanation of exactness

◦ Summary
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QCQP: Quadratically Constrained Quadratic Programming

Quadratic objective function and quadratic constraints

v∗ := min
x∈Rn

xTQ0x+ 2
(
q0

)T
x

s.t. xTQpx+ 2(qp)
T
x ≤ bp, p ∈ [m] := {1, . . . ,m}.

(P )

• Generally non‐convex & NP‐hard

• Approximately solvable via SDP relaxation
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SDP Relaxation

QCQP

v∗ = min
{
xTQ0x+ 2

(
q0

)T
x
∣∣∣xTQpx+ 2(qp)

T
x ≤ bp, p ∈ [m]

}
(P )

= min
{
Q0 •X + 2

(
q0

)T
x

∣∣∣∣∣ X = xxT

Qp •X + 2
(
q0

)T
x ≤ bp, p ∈ [m]

}

≥ min
{
Q0 •X + 2

(
q0

)T
x

∣∣∣∣∣ X ⪰ xxT

Qp •X + 2
(
q0

)T
x ≤ bp, p ∈ [m]

}
Semidefinite Programming (SDP) Relaxation

(PR)

=: v∗SDP

Notation

◦ Qp •X :=
∑
i,j

Qp
ijXij : Frobenius inner product.

◦ X ⪰ xxT ⇐⇒ X − xxT is positive semidefinite.
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Exact SDP Relaxation

Def: Exactness

SDP relaxation (PR) is exact (tight) if v∗ = v∗SDP

• Exact ⇐⇒ (PR) has a rank‐1 solution X∗

X∗ ⪰ x∗(x∗)
T ⇐⇒

[
1 (x∗)

T

x∗ X∗

]
⪰ O.

• Sufficient conditions for general QCQPs have been studied

◦ Sparsity and graphs

◦ Projection of epigraphs

◦ Collinearity of Gram matrix representation
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GramMatrix Transformation

Replace (x, X) in SDP relaxation:

• Fix e ∈ Rs with ∥e∥ = 1

• Introduce u1, . . . ,un ∈ Rs so that

[
1 xT

x X

]
=


eTe eTu1 eTun

eTu1
(
u1

)T
u1

(
u1

)T
un

eTun (un)
T
u1 · · · (un)

T
un



Qp •X + 2(qp)
T
x =

∑
i

∑
j

Qp
ijXij + 2

∑
i

qpi xi

=
∑
i

∑
j

Qp
ij

(
ui

)T
uj + 2

∑
i

qpi e
Tui
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Exactness Condition for Gram Matrix Representation

Finally, we obtain

v∗SDP = min
∑
i

∑
j

Q0
ij

(
ui

)T
uj + 2

∑
i

q0i e
Tui

s.t.
∑
i

∑
j

Qp
ij

(
ui

)T
uj + 2

∑
i

qpi e
Tui ≤ bp, p ∈ [m],

u1, . . . ,un ∈ Rn.

Proposition [Z20]
SDP relaxation is exact if there exist an optimal solution

(
u1

)∗
, . . . , (un)

∗

which are collinear to e, i.e.,∣∣eTui
∣∣ = ∥∥ui

∥∥ for all i ∈ [n].

[Z20] Zhang, On the tightness of semidefinite relaxations for certifying robustness to adversarial examples,
NeurIPS, 2020.
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◦ Quadratically constrained quadratic programming (QCQP)
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Single‐layer Neural Networks

W 0,W 1: weight matrices, b0, b1: bias vectors

Neural network

x1 := ϕ(W 0x0 + b0),

f(x0) := W 1x1 + b1.

Note we consider the case that

• W 1 = I , and b1 = 0.

• ϕ is an element‐wise ReLU function, i.e.,

ϕ(x) :=
[
φ(x1) · · · φ(xn)

]T
,

where φ(xi) := max {0, xi}.

φ(xi)

xi

0

0

1

1

φ
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Input Set X ⊆ Rn0

Set X contains the uncertainty and attacks.

• Each input x0 is chosen from X .

• The safety of x0 is evaluated by Sy .

Note
X is not the domain of NN f .

Various shapes are possible.

◦ hyper‐ellipsoid X = {x | ∥x− x̂∥2 ≤ ρ}.

◦ hyper‐rectangle X = {x | ∥x− x̂∥∞ ≤ ρ}.

Setting II
This talk covers the case where X is a hyper‐ellipsoid.

12



Polytope Safety Specification Set

Consider polytope safety specification set Sy

◦ Let Sy be a quadrilateral below.
◦ Y ⊆ Sy can be verified via four half‐spaces.

Sy

Y

Setting I
Assume that safety specification set Sy is a half‐space

H :=
{
y ∈ Rn2

∣∣ cTy − d ≥ 0
}
.
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QCQP Formulation

relax
Primal SDPQCQP DeepSDP

dual

Natual form

min 2cTx1

s.t. x1 ≥ 0, x1 ≥W 0x0 + b0, x1 ⊙
(
W 0x0 + b0 − x1

)
≤ 0,

( + some valid cuts ),
x0 ∈ X = {x | ∥x− x̂∥2 ≤ ρ} , x1 ∈ Rn1 .

⊙ = Hadamard product

Determine a constant term d for fixed c in{
x1 ∈ Rn2

∣∣ cTx1 − d ≥ 0
}
.

minimize
in primal side

maximize
in dual side 14



Primal SDP Relaxation

relax
Primal SDPQCQP DeepSDP

dual

Natual form

min 2cTx1

s.t. I •X00 − 2x̂Tx0 ≤ ρ2 − x̂Tx̂,(
ei
)T

x1 ≥ 0,
(
ei
)T

x1 ≥
(
ei
)T (

W 0x0 + b0
)
, i = 1, . . . , n1,

X11
ii − b0ix

1
i −

∑
j W

0
ijX

10
ij ≤ 0, i = 1, . . . , n1, 1

(
x0

)T (
x1

)T

x0 X00
(
X10

)T

x1 X10 X11

 ⪰ O

ei: the ith unit vector

Objective of this work
Verify the exactness of (primal) SDP relaxation

• checking “collinearity” of another form
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Dual SDP relaxation

relax
Primal SDPQCQP DeepSDP

dual

Natual form

max
γ,λ,ν,η,d

2d

s.t. γ

x̂
Tx̂− ρ2 −x̂T 0

−x̂ I O

0 O O

+

−2d 0T cT

0 O O

c O O


+

 0 νTW 0 −νT − ηT

(W 0)
T
ν O −(W 0)

T diag(λ)
−ν − η − diag(λ)W 0 2diag(λ)

 ⪰ O,

γ ∈ R+, λ,ν,η ∈ Rn
+, d ∈ R.
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Our Theoretical Results

For previous QCQP,

Theorem
The primal SDP relaxation is exact if

• X = {x | ∥x− x̂∥2 ≤ ρ}; or

• X = {x | ∥x− x̂∥∞ ≤ ρ},W 0 = I , and x̂ ≥ −b0.

In addition, DeepSDP is also exact under strong duality.

• No extra assumption in hyper‐ellipsoid case.

• Proof depending on
Gram matrix representation with e = e1.
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GramMatrix Representation of Safety Verification

◦ Assign uj ∈ Rs for x0, and vi ∈ Rs for x1:

x0 =
[(
e1

)T
u1, . . . ,

(
e1

)T
un0

]T
, x1 =

[(
e1

)T
v1, . . . ,

(
e1

)T
vn1

]T

◦ Similarly,

[X00]ij =
(
ui

)T
uj , [X10]ij =

(
ui

)T
vj , [X11]ij =

(
vi
)T

vj

Primal SDP is equivalently

min
uj ,vi

2
∑n1

i=1 ci
(
e1

)T
vi

s.t.
(
e1

)T
vi ≥ 0, i = 1, . . . , n1,(

e1
)T

vi ≥
(
e1

)T
(∑n0

j=1 Wiju
j + b0ie

1
)
, i = 1, . . . , n1,∥∥vi

∥∥2
2
≤

(∑n0

j=1 Wiju
j + b0ie

1
)T

vi, i = 1, . . . , n1,

n0∑
j=1

∥uj − x̂je
1∥22 ≤ ρ2.
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Decomposition according to uj and vi

min
uj ,vi

2
∑n1

i=1 ci
(
e1

)T
vi (1)

s.t.
(
e1

)T
vi ≥ 0, i = 1, . . . , n1, (2)(

e1
)T

vi ≥
(
e1

)T
(∑n0

j=1 Wiju
j + b0ie

1
)
, i = 1, . . . , n1, (3)∥∥vi

∥∥2
2
≤

(∑n0

j=1 Wiju
j + b0ie

1
)T

vi, i = 1, . . . , n1, (4)
n0∑
j=1

∥uj − x̂je
1∥22 ≤ ρ2. (5)

Inner problem

Ψ(v1, . . . , vn1) :=

min
u1,...,un0

n0∑
j=1

∥∥uj − x̂je
∥∥2
2

s.t. (3), (4).

Outer problem

min
v1,...,vn1

(1)

s.t. (2)

Ψ(v1, . . . , vn1) ≤ ρ2.


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Relationship Between Their Solutions

A part of KKT condition of Inner problem :
u1

...
un0

 =


x̂1e

1

...
x̂n0

e1

− n1∑
i=1

νi
2


Wi1e

1

...
Wine

1

+

n1∑
i=1

λi

2


Wi1v

i

...
Winv

i


Lemma: Linear Combination

For any optimal solution (u1)∗, . . . , (un0)∗ of Inner problem ,
there existm ∈ Rn0 andM ∈ Rn1×n0 such that

(uj)∗ = mje
1 +

n1∑
i=1

Mijv
i for each j ∈ {1, . . . , n0}.

20



Collinearity in Outer‐problem

Usingm andM changes Outer problem into

min
v1,...,vn1

2
∑n1

i=1 ci e
Tvi (1)

s.t. eTvi ≥ 0, i = 1, . . . , n1, (2)
n0∑
j=1

∥∥∥∥∥(mj − x̂j) e
1 +

n1∑
i=1

Mijv
i

∥∥∥∥∥
2

2

≤ ρ2.



Lemma: Collinearity of (vi)∗

Outer problem has an optimal solution (v1)∗, . . . , (vn1)∗ collinear to e1.

Therefore, the SDP relaxation is exact due to the collinearity.
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Collinearity in Outer‐problem

Usingm andM changes Outer problem into

min
v1,...,vn1

2
∑n1

i=1 ci e
Tvi (1)

s.t. eTvi ≥ 0, i = 1, . . . , n1, (2)
n0∑
j=1

∥∥∥∥∥(mj − x̂j) e
1 +

n1∑
i=1

Mijv
i

∥∥∥∥∥
2

2

≤ ρ2.


Essence of Proof.

• Let (v̄1, . . . , v̄n1) be an optimal solution.

• Assume at least one of v̄1, . . . , v̄n1 is not collinear to e1.

• Define
v̂i :=

[
v̄i1, 0, · · · , 0

]T
.

• Then, (v̂1, . . . , v̂n1) is another optimal solution.
21
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Meaning of Exact Relaxation

Current situation

• Instead of checking whether Y ⊆ Sy ,

Y ⊆ H :=
⋂
k

{
y ∈ Rn2

∣∣∣ (ck)T
y − dk ≥ 0

}
⊆ Sy.

Optimal Solutions

Where does exactness appear?

• Half‐space H supports Y at a face.
• Margin between H and Sy increases.

◦ It is the robustness of the input set X .
◦ ⇐⇒ X can be made larger.
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Instance with Exact Relaxation

Example: a single‐layer NN

W 0 =

[
1/2 5/4

−6/5 2/5

]
, W 1 =

[
1 0

0 1

]
, b0 =

[
−0.5
−0.2

]
, b1 =

[
0

0

]
.

with the input set

X :=

{
x ∈ R2

∣∣∣∣∣
∥∥∥∥∥x−

[
0

0.5

]∥∥∥∥∥
2

≤ 1

}
.

X x1

x2

O

2

1

21−1

=⇒

y1

y2

Y

y = ϕ(W 0x0 + b0)

O

2

1

21−1 24



Experiment Result in Mosek and Julia

Slope c∗ Solution
c1 c2 d∗

1 0 −8.42× 10−10

0 1 −3.45× 10−10

−1 1 −1.47
1 −1 −1.26

−1/4 −1 −1.32
−1/2 −1 −1.46
−1 −1 −1.91
−2 −1 −3.16
−4 −1 −5.96

y1

y2

Y

2

1

−1

21−1 O

Observation
All boundaries intersect Y at a point
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Conclusion

Summary

• Safety verification of single‐layer neural networks

• Exactness conditions of SDP relaxation

• Graphical insight for exactness

Future works

• Analyze the non‐polyhedral case of Sy

• Extend results to other networks

Thank you for your attention!

For more details, see arXiv:2504.09934
Exact Semidefinite Relaxations for Verifying Robustness of Neural Networks
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• Less accurate than other methods in general [NP21].

• Accurate when the relaxation is exact.

[NP21] Newton and Papachristodoulou, Neural network verification using polynomial optimisation, IEEE
CDC, 2021.



Constraints for Hidden Layers

 1

w0

ϕ(w0)


T 0 0T 0T

0 O −ei
(
ei
)T

0 −ei
(
ei
)T

2ei
(
ei
)T


 1

w0

ϕ(w0)

 = 0, i = 1, . . . , N, (6a)

 1

w0

ϕ(w0)


T  0

(
ei
)T −

(
ei
)T

ei O O

−ei O O


 1

w0

ϕ(w0)

 ≤ 0, i = 1, . . . , N, (6b)

 1

w0

ϕ(w0)


T  0 0T −

(
ei
)T

0 O O

−ei O O


 1

w0

ϕ(w0)

 ≤ 0, i = 1, . . . , N. (6c)



Valid Cuts

Let w0 = W 0x0 + b0.

Valid Cuts for ReLU
The following inequation always holds[

ϕ(w0
j )− ϕ(w0

i )
] [
ϕ(w0

j )− ϕ(w0
i )− (wj − wi)

]
≤ 0 ∀(i, j) ∈ {1, . . . , n}2

[
w0

ϕ(w0)

]T [
O −(ei − ej)(e

i − ej)
T

−(ei − ej)(e
i − ej)

T
2(ei − ej)(e

i − ej)
T

][
w0

ϕ(w0)

]
≤ 0, (7)



Input Constraint

Since x0 ∈ X = {x | ∥x− x̂∥2 ≤ ρ}.

In QCQP
∥∥x0 − x̂

∥∥2
2
≤ ρ2

In SDP relaxationx̂
Tx̂− ρ2 −x̂T 0

−x̂ I O

0 O O

 •
 1

(
x0

)T (
x1

)T

x0 X00 X10
T

x1 X10 X11


=: G

≤ 0

In DeepSDP By introducing a dual variable γ,

γ

x̂
Tx̂− ρ2 −x̂T 0

−x̂ I O

0 O O





Safety Specification Set

Consider a half‐space H :=
{
y ∈ Rn2

∣∣ cTy − d ≥ 0
}
.

◦ The slope c according to each half‐space is given.

◦ The largest d makes H smaller.

In SDP relaxation

x1 ∈ H ⇐⇒

−2d 0T cT

0 O O

c O O

 •
 1

(
x0

)T (
x1

)T

x0 X00 X10
T

x1 X10 X11

 ≤ 0

In DeepSDP Let d behave as a dual variable.



Quadratic Formulation for ReLU Function

Review: ϕ applies element‐wisely ReLU function φ

Let w0 := W 0x0 + b0. For any i ∈ {1, . . . , n1},

φ(w0
i ) = max{0, w0

i } ⇐⇒

{
φ(w0

i )
(
φ(w0

i )− w0
i

)
≤ 0,

φ(w0
i ) ≥ w0

i , φ(w0
i ) ≥ 0.

In QCQP The first inequality is

 1

w0

ϕ(w0)


T 0 0T 0T

0 O −ei
(
ei
)T

0 −ei
(
ei
)T

2ei
(
ei
)T


 1

w0

ϕ(w0)

 ≤ 0, i = 1, . . . , n1.



Transformation of [1,w0, ϕ(w0)]
T

Equivalently, for i ∈ {1, . . . , n1}, 1

x0

x1


T  1 0T 0T

b0 W 0 O

0 O I


T 0 0T 0T

0 O −ei
(
ei
)T

0 −ei
(
ei
)T

2ei
(
ei
)T


 1 0T 0T

b0 W 0 O

0 O I


=: Li

 1

x0

x1

 ≤ 0.

In SDP relaxation Li •G ≤ 0, i ∈ {1, . . . , n1}

In DeepSDP Introducing a dual variable λ ∈ Rn1
+ ,

∑n1

i=1 λiLi

Constraint φ(w0
i )

(
φ(w0

i )− w0
i

)
≤ 0 φ(w0

i ) ≥ w0
i φ(w0

i ) ≥ 0

Dual variable λi νi ηi
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