Publications

Preprint(s)

  1. Exact Matrix Completion via High-Rank Matrices in Sum-of-Squares Relaxations
    Godai Azuma, Sunyoung Kim, and Makoto Yamashita, 2023. [arXiv:2311.14882][OO]

Refereed Journal Papers

  1. Exact SDP relaxations for quadratic programs with bipartite graph structures
    Godai Azuma, Mituhiro Fukuda, Sunyoung Kim, and Makoto Yamashita,
    Journal of Global Optimization, 86(3), 671–691, 2023.
    DOI: 10.1007/s10898-022-01268-3.
  2. Exact SDP relaxations of quadratically constrained quadratic programs with forest structures
    Godai Azuma, Mituhiro Fukuda, Sunyoung Kim, and Makoto Yamashita,
    Journal of Global Optimization, 82(2), 243–262, 2022.
    DOI: 10.1007/s10898-021-01071-6.

Refereed Conference Paper(s)

  1. Stepwise Structure Learning Using Probabilistic Pruning for Bayesian Networks: Improving Efficiency and Comparing Characteristics
    Godai Azuma, Daisuke Kitakoshi, and Masato Suzuki,
    Information Science and Applications 2017 (ICISA 2017),
    Lecture Notes in Electrical Engineering 424 (2017), pp. 533–543.
    DOI: 10.1007/978-981-10-4154-9_62.

Oral presentations (International)

  1. Tightness conditions of SDP relaxation for QCQPs with bipartite graph structure
    Godai Azuma, Mituhiro Fukuda, Sunyoung Kim, and *Makoto Yamashita,
    10th International Congress on Industrial and Applied Mathematics (ICIAM), Tokyo, Japan, August 2023.
  2. Tight Semidefinite Relaxations for Sign-indefinite QCQPs with Bipartite Structures
    *Godai Azuma, Mituhiro Fukuda, Sunyoung Kim, and Makoto Yamashita,
    SIAM Conference on Optimization (OP23), MS100, Seattle, WA, 2023. [Slide]
  3. Exactness conditions for SDP relaxation of bipartite-structured and sign-indefinite QCQPs
    *Godai Azuma,
    WOMBAT 2022, Perth, WA, Australia, 2022. [Slide]
  4. Exactly Solving a class of QCQPs via Semidefinite Relaxation with Bipartite Sparsity Patterns
    *Godai Azuma, Mituhiro Fukuda, Sunyoung Kim, and Makoto Yamashita,
    IWoCO 2022, Virtual, 2021. [Slide]
  5. Exact semidefinite relaxations for QCQPs with forest-structured matrices and its applications
    *Godai Azuma, Mituhiro Fukuda, Sunyoung Kim, and Makoto Yamashita,
    IFORS 2021 Virtual, TD-03, 2021.
  6. Exactness Conditions for Semidefinite Relaxation of Nonconvex QCQPs with Forest Structures
    *Godai Azuma, Mituhiro Fukuda, Sunyoung Kim, and Makoto Yamashita,
    SIAM Conference on Optimization (OP21), MS94, 2021.

Oral presentations (Domestic)

  1. 二部グラフで表現可能な疎性を持つ二次制約付き二次計画問題と狭小な半正定値計画緩和の条件
    東 悟大, 福田 光浩, Sunyoung Kim, and 山下 真,
    日本オペレーションズ・リサーチ学会 春季研究発表会, 2-A-1, 2022.
  2. 森構造疎性を持つ二次制約付き二次計画問題と半正定値計画緩和の狭小性
    東 悟大, 福田 光浩, 山下 真, and Sunyoung Kim,
    日本数学会 日本応用数理学会 数学・数理科学専攻若手研究者のための異分野・異業種研究交流会, 2020.
  3. 三重対角性を持つ二次制約付き二次計画問題の狭小な半正定値計画緩和
    東 悟大, 福田 光浩, 山下 真, and Sunyoung Kim,
    京都大学数理解析研究所(RIMS)共同研究 数理最適化の理論・アルゴリズム・応用, 2020.
  4. 二次制約付二次計画問題のSDP緩和における厳密性判定法の応用とその考察
    東 悟大,
    未来を担う若手研究者の集い 2019, Workshop on Optimization and its Applications (OPTA), Operations Research Society of Japan, 7-2, 2019.
  5. 確率的枝刈りを用いたベイジアンネットの構造学習法の高速化
    東 悟大, 北越 大輔, and 鈴木 雅人,
    電子情報通信学会 2016年総合大会講演論文集 (IEICE2016), D-20-8, 2016, pp. 208.
  6. Improving Learning Speed in Stepwise Structure Learning Method for Bayesian Networks by using Probabilistic Pruning
    Daisuke Kitakoshi, Godai Azuma, and Masato Suzuki,
    IPSJ SIG Technical Report, 2016-ICS-182 (2), 2016, pp. 1–8.
  7. クラスタリングと確率的枝刈りを用いたベイジアンネットの段階的構造学習法 −確率的枝刈りの性能改善および特性評価−
    東 悟大, 北越 大輔, and 鈴木 雅人,
    計測自動制御学会 システム・情報部門 学術講演会 2015, SS4-1, 2015, pp. 666–671.

Softwares

BayesianNetwork
Framework for learning and reasoning Bayesian Networks, written in C++14.
twit-library (obsolete)
OAuth1.0 client library in C++11, powered by BoostConnect.
BoostConnect (deprecated)
Server/Client framework wrapping Boost.Asio (You should try to use cpp-netlib and Networking TS).
Window Changer
Utility software which associates keyboards with a unique window, and actives associated window when pressing keyboard. This is awarded a prize of "Director-General, Commerce and Information Policy Bureau" in 32th U-20 Programming Contest, Japan.

Thesis

  1. On the Exactly Solvable Conditions of Quadratically Constrained Quadratic Program with Sparsity Structures
    Tokyo Institute of Technology, March 2023 — PhD Thesis [T2R2]
  2. 三重対角な二次制約付き二次計画問題に対する半正定値計画緩和の狭小性について
    Tokyo Institute of Technology, March 2020 — Master's Thesis